PhD Thesis

Estimating Optical Flow with
Convolutional Neural Networks
Florian Eddy Robert lIg

@
FlowNetS
| Occ.

Dissertation zur Erlangung des
Doktorgrades der Technischen Fakultat der
Albert-Ludwigs-Universitat Freiburg

UNI

FREIBURG

Tag der Promotion /

Datum der miindlichen Prifung:

Dekanin:

Erstgutachter und Betereuer:
Zweitgutachterin:

Beisitzer:

13.03.2020

Prof. Dr. Hannah Bast
Prof. Dr. Thomas Brox
Prof. Dr. Cordelia Schmidt
Prof. Dr. Frank Hutter

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work. I hereby also declare, that my Thesis has not been prepared for another
examination or assignment, either wholly or excerpts thereof.

Place, Date Signature

ii

Abstract

Optical flow estimation is a fundamental discipline in computer vision. Applications
range from camera stabilization, image compression, action recognition and motion
segmentation to structure from motion.

In the past, many attempts have been made to solve the problem by establishing an
energy function and optimizing it with discrete or variational methods. The difficult
aspects of optical flow, such as occlusions, discontinuities and the aperture problem,
are hard to integrate into such energy minimization and pose inevitable limitations.

This thesis presents an orthogonal approach to estimate optical flow with Convolu-
tional Neural Networks (CNNs) and shows that such networks are able to learn a
better heuristic than engineered methods.

First, an end-to-end encoder-decoder network named FlowNetS and a Siamese network
named FlowNetC with an explicit correlation unit are presented. The approach is
then taken further to a network pipeline named FlowNet2, with several refinement
stages in which occlusions and motion boundaries are also integrated.

The results show that optical flow estimation with CNNs is possible and that CNNs
can perform among state-of-the-art methods while being orders of magnitude faster in
runtime. Moreover, in motion boundary and occlusion estimation, CNNs significantly
outperform traditional methods and are state of the art. Being able to estimate
such high-quality flow in real time has changed the possible use cases and has had a
significant impact on applications. Finally, CNNs have the advantage of being able
to learn priors for specific scenarios as well as for the aperture problem from training
data.

In order to take possible applications even further, a multi-hypothesis network named
FlowNetH is introduced and a stack of networks to estimate an uncertainty measure
along with the flow is presented. The evaluation shows that the uncertainties are
state of the art, too, and that CNNs are able to inform about the reliability of their
own flow predictions very well.

The reader is finally left with an outlook of how the approach can be brought to
a multi-modal probabilistic setting and how it can be used as a building block for
larger systems in future.

v

Zusammenfassung

Die Schéatzung von optischem Fluss ist ein grundlegender Bestandteil der Bildverar-
beitung. Die Anwendungen reichen von Kamerastabilisierung iiber Bildkompression,
Handlugserkennung und Bewegungssegmentierung bis zu 3D-Rekonstruktion.

In der Vergangenheit wurden viele Ansédtze entwickelt, um das Problem mittels
einer Energiefunktion und diskreter oder kontinuierlicher Optimierung zu 16sen. Die
schwierigen Aspekte von optischem Fluss, wie Verdeckungen, Diskontinuitdten und
das Aperturproblem, sind problematisch in solche Ansétze zu integrieren und fiihren
zu Einschrinkungen.

Diese Dissertation stellt einen neuartigen Ansatz vor, indem sie Convolutional Neural
Networks verwendet. Es wird gezeigt, dass die neuronalen Netze eine bessere Heuristik
lernen als die bislang handlich entwickelten Methoden.

Als erstes werden ein End-to-End Encoder-Decoder Netzwerk namens FlowNetS
und ein siamesisches Netzwerk namens FlowNetC mit einer expliziten Korrelation
vorgestellt. Der Ansatz wird dann weiterentwickelt zu einer Pipeline von Netzwerken,
genannt FlowNet2, und in die einzelnen Stufen werden weiterhin Verdeckungen und
Bewegungskanten integriert.

Die Resultate zeigen, dass die Schétzung von optischem Fluss mittels neuronaler
Netze moglich ist und dass die Ergebnisse vergleichbar mit State-of-the-art-Ansétzen
sind, derweil aber mit um Gréfenordnungen geringerer Laufzeit. Weiterhin sind die
Netzwerke deutlich besser darin, Verdeckungen und Bewegungskanten zu erkennen,
und setzen in diesen Bereichen einen neuen State of the art. Die Schétzung von solchen
hochwertigen Flussfeldern in Echtzeit hat aufserdem die méglichen Anwendungen
revolutioniert und allgemein groffe Auswirkungen verursacht. Zuletzt haben die neu-
ronalen Netze auch noch den Vorteil, dass man Priors fiir spezifische Anwendungsfalle
und das damit verbundene Aperturproblem aus Trainingsdaten lernen kann.

Um die moglichen Anwendungen sogar noch weiterzufithren, werden anschliefiend ein
Multi-Hypothesen-Netzwerk namens FlowNetH und eine Pipeline fiir die Schitzung
von Unsicherheiten prisentiert. Die Auswertung zeigt, dass die Unsicherheiten eben-
falls State of the art sind und dass neuronale Netze sehr gut iiber die Zuverlassigkeit
der eigenen Flussschdtzung informieren kénnen.

Dem Leser wird abschliefend ein Ausblick dariiber gegeben, wie man den Ansatz
dazu erweitern kann, multimodale Wahrscheinlichkeitsverteilungen zu liefern, um
diese zukiinftig als Baustein fiir weitergehende, zuverldssigere Systeme zu verwenden.

vi

To my science Teacher
Steve Fernandes

X

Contents

1 Introduction

1.1 List of Publications
1.2 Contributions by the Author
1.3 Contributions to the Field of Computer Vision

2 Problem Definition

2.1 Optical Flow
2.2 Disparity
2.3 Scene Flow
2.4 Evaluation
3 Traditional Approaches
3.1 Feature Descriptors
3.2 Energy-Based Methods,
3.3 Combinatorial Methods
3.4 Heuristics
3.5 Occlusion, Depth and Motion Boundary Estimation
3.6 Uncertainty Estimation
3.7 Summary ...
4 Convolutional Neural Network Basics
4.1 Basic Concepts
4.2 Training and Convergence
4.3 Feature Hierarchies
5 Training Data
5.1 FlyingChairs e
5.2 ChairsSDHom
5.3 FlyingThings3D
6 FlowNet
6.1 Network Architectures,
6.2 Anmalysis
6.3 Summary

O W

o ©

17
18
19

23
23
25
30
31
34
36
38

39
39
41
43

45
46
47
48

7 SceneFlowNet

8 Network Stacks
8.1 Stacking two Networks for Flow Refinement
8.2 Stacking Multiple Diverse Networks
8.3 Ewaluation on Applications
8.4 Summary

9 Joint Flow, Occlusion and Motion Boundary Estimation
9.1 Estimating Occlusions with CNNs
9.2 Joint Estimation of Occlusions and Flow
9.3 Flow, Occlusion and Motion Boundary Estimation Stack
9.4 Benchmark Results 0oL
9.5 Application to Motion Segmentation
9.6 Summary

10 Extending Training with Unlabeled Images
10.1 FusionNet o
10.2 Augmented FlowNet
10.3 Experiments
10.4 Benchmark Results
10.5 Results on Motion Segmentation
10.6 Summary

11 Uncertainty Estimation
11.1 Formulation of Uncertainty
11.2 Sources of Uncertainty
11.3 Bayesian Neural Networks and Frequentist Approximations
11.4 Predicting Multiple Hypotheses within a Single Network
11.5 Experiments
11.6 Summary

12 Discussion
12.1 Architecture Choice
12.2 Regularization oo
12.3 Comparison of Algorithm Implementations

13 Outlook

14 Conclusion

Acknowledgements
Bibliography

Notes

65

67
67
69
71
73

75
75
7
80
81
85
86

87
88
90
91
94
94
95

117
117
120
121
123

127

130

131

153

Contents

X1

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Ilustration of optical flow 10
Examples of apparent motion 10
Rigid and nonrigid objects oL 12
Rotation leading to nonlinear displacement field 12
Mlustration of occlusions L. 13
Occlusions and disocclusions 14
Homogeneous areas and features 15
Mlustration of the aperture problem 16
Epipolar geometry 17
Disparity example o 17
Scene flow definition oL 18
Optical flow visualization 19
Endpoint vs. angular erroro 20
Overview of benchmark datasets 22
Concept of HOG descriptors 24
Effect of linearization 27
Energy descent for nonconvex functions 28
Elastic deformation to register images 29
DeepMatching aggregation step L. 31
Concept of DeepMatching 31
PCA-Flow basis 32
PCA-Flow reconstruction 32
PatchMatch and FlowFields propagation 33
Flow inconsistency due to occlusion. 35
Sparsification plot 36
Neural network 40
Activation functions 40
Convolution variants 41
Local minima in high-dimensional spaces 42
Feature hierarchy learned by a CNN 44
Two examples from the FlyingChairs dataset 46
Displacement magnitude histograms 47
Example images from the ChairsSDHom dataset 48

5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4
9.5

10.1
10.2
10.3

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

12.1
12.2
12.3
12.4

List of Figures

Examples from the FlyingThings3D dataset 50
FlowNet e 51
Siamese networks and stacked images.o 52
FlowNetS architecture 53
FlowNetC architecture 54
Decoder architectureo 99
Data augmentation examples 57
Effect of skip connectionso 58
Image reconstruction from bottlenecko 59
Effect of ground truth normalization 60
Visualization of first-layer filters of FlowNetC 60
Visualization of features after correlation 61
Performance over network size 62
Learning-rate schedules 63
Joint SceneFlowNet from a FlowNet and two DispNets 66
FlowNet2 network stack 67
FlowNet2 family endpoint error vs. runtime 71
FlowNet2 results on Sintel 72
FlowNet2 results on real images 72
Occlusion estimation 75
Joint flow and occlusion refinement stack variants 79
Flow, occlusion and motion boundary estimation stack 81
Qualitative results for occlusion estimation 83
Qualitative results for motion boundary estimation 83
Network acting as a regularizer on noisy data 88
Overview of the FusionNet principle 89
Data domain transfer by using FusionNet 90
Example of joint estimation of optical flow and its uncertainty 97
Probabilistic formulation of correspondence 98
Overview of ensemble generation approaches 103
Networks for uncertainty prediction 104
Sparsification plot of FlowNetH-Pred-Merged 109
Graphic evaluation of uncertainty estimation approaches 110
Full flow and uncertainty estimation stack 112
Uncertainty estimation examples from real-world data 113
Comparing FlowNetH variants to ProbFlow 114
Results during the refinement pipeline 118
Evaluation of coarse-to-fine estimation abilities 119
General and specialized architectures 120
Evaluation of regularization challenges 120

Xii

List of Figures

xiii

13.1 From point estimates to mixture distributions 124
13.2 Sampling and fitting framework 124
13.3 Using CNNs to build graphical models 125
13.4 Mlustration of Bayes filter 126

List of Tables

2.1

6.1
6.2
6.3
6.4
6.5

7.1

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10.1
10.2
10.3
10.4
10.5

11.1
11.2
11.3

Error regionso 21
Solverresults 56
Augmentation results 97
Deep supervision resultso 57
Results for using skip connections 58
Dataset schedules 63
SceneFlowNet compared to single FlowNet and DispNet 66
Ablation study for stacking two networks 68
FlowNet 2 stack variants 69
Motion segmentation and action recognition results by using different

methods 74
Estimation of only occlusions from different inputs with a FlowNetS . . 76
Joint estimation of flow and occlusions with a FlowNetC 7
Results of joint flow and occlusion refinement stacks 80
Evaluation of estimated disparity occlusions from our DispNet3 82
Evaluation of estimated flow occlusions from our FlowNet3 82
Evaluation of estimated motion boundaries from our FlowNet3 82
Benchmark results for disparity estimation 84
Benchmark results for optical flow estimation 85
Motion segmentation results by using our occlusions 86
Comparison of FusionNet to the state of theart 92
Influence of the proxy ground truth on the augmented FlowNetC 93
Comparison of augmented FlowNet stacks to UnFlow 94
Benchmark results for FusionNet and AugmentedFlowNet 96
AugmentedFlowNet motion segmentation results 96
Improved FlowNetC settings 108
Quantitative evaluation of uncertainty estimation approaches 110
Benchmark results for FlowNetH variants 114

Xiv

CONCEPTS OF
NATURE

MACHINE
LEARNING

Chapter 1

Introduction

Looking at human history, humans have ever been striving for improving their lives
through technological innovations. While in the beginning, these innovations where
as banal as knives and fire, technological advancement has reached an extremely high
level today. The basis for such a development is the understanding of the concepts of
nature so as to employ them in constructing sophisticated mechanisms.

Probably the most important human sense is vision, and hence, a very important
question for technological advancement is how human visual abilities can be imple-
mented by technology. In order to pursue this endeavour, the field of computer vision
has evolved over time [Szel0|. The motivation that drives many researchers in this
field is the goal to finally imitate the performance of the human visual system with
by a machine [Bro05|.

In many phenomena of nature, principles can be represented by clear physical laws,
e.g. the free fall of a ball or the required support for a building. In unison with the
human pursuit of understanding concepts, the field of computer vision has long been
focusing on finding such laws in vision, too [Szel0]. However, almost all objects in
nature are unique, so uncovering such laws often seems to be impossible. For example,
no mathematical laws are known until the present day for identifying a human in an
image. Instead, there are only statistics on what humans typically look like.

The field of machine learning takes a contrary approach and does not try to model
these laws, but instead seeks to build a machine to infer such laws from data [Bis06].
The far too complex dependencies in this case are not modelled by a human, but
left to be determined by an algorithm from given training data. This may be
contrary to the long-pursued practice in which humans do not seek to understand
the laws anymore, but build a machine to do this work for them: Machine-learning
approaches are designed ‘not to memorize the data but to learn the underlying
generator” [Bis06]. Such learned models have shown very good generalization in
recent history [KSH12, IS15, HZRS16, HLvdMW17]. Another important observation
is that the performance of algorithms heavily depends on the representation of
data [GBC16]. The main reason why an analysis of the image contents is so difficult
lies in the large amount of unrelated data provided by a camera, and there is a priori
no relation between pixels and objects [Bro05]. For example, if the representation
is by features, such as foot, arm, torso and head instead of the image pixels, person
detection becomes an easy task.

1 Introduction

The breakthrough of machine learning came with deep learning, with which it became
possible to learn a complete hierarchy of hidden feature representations |[GBC16]
in large networks [KSH12|. Keys to this success were the simple ReLLU nonlinear-
ity [NH10, KSH12| and the computation power of GPUs [KSH12|. Convolutional
neural networks (CNNs) |[LB98| have since then shown superior performance in al-
most every computer vision discipline [KSH12, SYLK18, UZU*17, ISB18, EPF14,
RDGF16, DLHT16, RFB15].

OrpticaL. One of these disciplines is optical flow, which is fundamental to computer vision.
FLow Applications range from camera stabilization, image and video compression, action
recognition and motion segmentation to structure from motion. While in the past,
optical flow has been mostly addressed by discrete and variable methods, this thesis
presents the initial breakthrough solution with CNNs and continues by elaborating
the approach to competitive results in flow, disparity, occlusion, motion boundary

and uncertainty estimation.

Optical flow estimation itself is a difficult optimization problem, contains many hyper-
parameters and suffers from the aperture problem [Szel0]. The latter makes the
problem ill-defined, and in such cases, the desired solution can only be obtained with
prior knowledge. Such prior knowledge needs to contain typical object connectivities
and motion patterns. Again, it is infeasible to derive corresponding laws for all
possible types of objects. Learning these rules from actual training data is where
CNNs show their ultimate strength.

Before this work, CNNs were mainly successfully applied to classification [KSH12]
and other cases of semantic segmentation [SLD17] as well as depth from single
image [EPF14]. Correspondence estimation itself is very different from those problems
in that it requires a matching algorithm. This work shows that CNNs are capable
of also learning an approximation of such an algorithm end-to-end, thereby being
orders of magnitude faster. In general, this proves that much better rules for inferring
optical flow exist than have so far been discovered by humans with handcrafted

methods [HS81, BM11, BTS15, WRHS13|.

UncerrainTy While the exact rules learned by a CNN cannot be understood, it is most important
ESTIMATION that the learned rules model the underlying data and provide the best solution for
the task to be solved. However, one can then argue about how this generalizes —
that the CNN is a black box and that there is no reliability measure for its output.
Part of this thesis will therefore be focusing on showing that reliability measures
(uncertainties) can be obtained very well along with the flow predictions. The results
show that the uncertainties from CNNs actually outperform traditional methods and

that one can trust them even more than the engineered approaches.

Occrusions Other important modalities to flow are occlusions and motion boundaries, which are
AND MOTION hoth very strong cues for motion segmentation. Referring to the classic work of Black
BOUNDARIES ;g Jepson [BF00al, "motion boundaries may be useful for navigation, structure from
motion, video compression, perceptual organization and object recognition". For
traditional methods, they provide a significant problem: they require discrete decisions
and cannot easily be integrated into convex energy minimization [HR17, PRCBP16|.
Instead, occlusions are regarded as outliers to the data term and motion boundaries

Chapter 1 Introduction

OUTLOOK

1.1

[DFI*15]

[MIH*16]

[IMS*17]

[UZU*17]

[MIB17]

are regarded as outliers to the smoothness term [BM11]. This causes problems if the
amount of occlusions and motion boundaries in the image is large. They are therefore
usually estimated in a disjoint post-processing step. Since they already complicate
the flow estimation itself, estimating them from the flow is thus not very reliable. It
is interesting to see how CNNs perform on these modalities, and this thesis shows
that CNNs outperform traditional methods for occlusions and motion boundaries by
far, too.

The work concludes that CNNs can learn an extremely efficient heuristic for optical
flow (with an immense impact for practical applications), are among the state of
the art in flow estimation as well as in occlusion, motion boundary and uncertainty
estimation. The reader is finally left with an outlook on how the approach can be
brought to a multi-modal probabilistic setting and how it be used as a building block
for larger systems.

List of Publications

This thesis summarizes the following publications (equal contributions indicated
with *):

FlowNet: Learning Optical Flow with Convolutional Networks
Alexey Dosovitskiy*, Philipp Fischer*, Eddy Ilg*,

P. Hausser, C. Hazirbag, V. Golkov, P. Smagt, D. Cremers and Thomas Brox
IEEE International Conference on Computer Vision (ICCV), 2015

A Large Dataset to Train Convolutional Networks for Disparity, Optical
Flow, and Scene Flow Estimation

Nikolaus Mayer*, Eddy Ilg*, Philip Hausser*, Philipp Fischer*,

D. Cremers, A. Dosovitskiy and Thomas Brox

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Eddy Ilg,

N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and Thomas Brox

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

DeMoN: Depth and Motion Network for Learning Monocular Stereo
Benjamin Ummenhofer*, Huizhong Zhou*,

J. Uhrig, N. Mayer, Eddy Ilg, A. Dosovitskiy and Thomas Brox

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

End-to-End Learning of Video Super-Resolution with Motion Compensa-
tion

Osama Makansi,

Eddy Ilg and Thomas Brox

German Conference on Pattern Recognition (GCPR) 2017

1.2 Contributions by the Author

[KBIt19] Lucid Data Dreaming for Multiple Object Tracking
Anna Khoreva,
Rodrigo Benenson, Eddy Ilg, Thomas Brox and Bernt Schiele
International Journal of Computer Vision, 2019

[MIFt18] What Makes Good Synthetic Training Data for Learning Disparity and
Optical Flow Estimation?
Nikolaus Mayer,
Eddy Ilg, P. Fischer, C. Hazirbas, D. Cremers, A. Dosovitskiy and Thomas Brox
International Journal of Computer Vision, 2018

[1CGT18] Uncertainty Estimates for Optical Flow with Multi-Hypotheses Networks
Eddy Ilg*, Ozgiin Cicek*, Silvio Galesso*,
A. Klein, O. Makansi, F. Hutter and Thomas Brox
European Conference on Computer Vision (ECCV), 2018

[1SB18] Occlusions, Motion and Depth Boundaries with a Generic Network for
Optical Flow, Disparity, or Scene Flow Estimation
Eddy Ilg*, Tonmoy Saikia*,
and Thomas Brox
European Conference on Computer Vision (ECCV), 2018

[MICB19] Overcoming Limitations of Mixture Density Networks: A Sampling and
Fitting Framework for Multimodal Future Prediction
Osama Makansi, Eddy Ilg, Ozgiin Cicek,
and Thomas Brox
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

[MIB18] FusionNet and AugmentedFlowNet: Selective Proxy Ground Truth for
Training on Unlabeled Image
Osama Makansi*, Eddy Ilg*,
and Thomas Brox
arXiv:1808.06389 (20 Aug 2018)

1.2 Contributions by the Author

FrowNer This work presents deep networks for optical flow, disparity and scene flow estimation.
The pioneering work, which has first shown that estimation of optical flow with a
CNN is possible, was termed FlowNet |[DFIT15] and was joint work together with
Alexey Dosovitskiy and Philipp Fischer. The author of this thesis contributed with
expertise in optical flow, to the concept of FlowNetC and the design of the correlation
layer. Furthermore, the author implemented the variational refinement step.

Scene FLow In a follow-up work together with Nikolaus Mayer, Philip Hausser and Philipp Fischer,
more sophisticated training datasets were provided and the networks were also applied
to disparity and scene flow estimation. The author contributed the scene flow network.

Chapter 1 Introduction

FLowNET2

OCCLUSIONS
AND MOTION
BOUNDARIES

FusioNNET /
AUGMENTED
FLowNET

FLowNETH

MIXTURE
DENSITIES

MINOR

While [DFIT15] has first proven the completely novel approach, it did not reach a
performance comparable to state-of-the-art methods and performed poorly in real-
world applications. A major contribution by the author is the work of FlowNet
2.0 [IMST17] (abbreviated as FlowNet2), proposing the concept of refinement in
multiple steps by using a stack of several networks. That work was the sole idea of the
author of this thesis. He contributed the concept, developed the differentiable warping
operation and training schedules for the stack construction, and proposed the dataset
priors for the ChairsSDHom dataset. This provided the first CNN to outperform
or be on-par with traditional methods while being orders of magnitude faster. The
revolutional accuracy/run-time trade-off enabled the previously impractical use of
optical flow in numerous practical applications (see also Section 1.3). The analysis
of these schedules and datasets further contributed to [MIFT 18], and the concept of
network stacks and refinement also contributed to [UZUT17].

Further work together with Tonmoy Saikia [ISB18] extended FlowNet2 to additionally
estimate occlusions and motion boundaries, and applied the same stacks also to
disparity. All the estimated quantities outperformed existing methods by far in
terms of accuracy as well as run-time and achieved state-of-the-art results on various
benchmarks [ISB18]. The author contributed the loss functions for motion boundaries
and occlusions as well as the the network setups.

A limitation of the CNN approach was still the need for large amounts of annotated
training data, which could only be generated synthetically in a laborious process. The
work with Osama Makansi termed FusionNet and AugmentedFlowNet [MIB18| has
shown that optical flow computed from different existing methods can successfully be
fused to create surrogate ground truth, enabling the successful training of FlowNet2
on large amounts of additional unlabeled data. This concept was developed together
with Osama Makansi. The author also contributed the hinge loss for an unconstrained
assessment metric.

The work together with Ozgiin Cicek and Silvio Galesso investigated the ability to
make not only a prediction of the optical flow, but to also provide an uncertainty
estimate along with it [[CGT18]. A major contribution by the author of this thesis
is a CNN that predicts multiple hypotheses from a single network and in a single
forward pass (named FlowNetH) from which the uncertainty can then be inferred.
This approach gave rise to predict high-quality uncertainty without the need of
time-consuming sampling.

Since the uncertainty estimation for optical flow presented unimodal probability
distributions as output, further work with Osama Makansi and Ozgiin Cicek extended
the approach to obtain well-calibrated mixture distributions [MICB19]. While this is
in principle similar to Mixture Density Networks, the approach uses FlowNetH in an
evolving manner with an algorithm named EWTA to internally ensure diversity. The
author contributed mainly to the idea of EWTA which was developed jointly with
Osama Makansi and Ozgiin Cicek.

The author also contributed to the DeMoN work [UZU"17] by transferring some of
the concepts of FlowNet2 to depth-and-motion estimation. Other minor contributions
include an end-to-end network for multi-frame video super-resolution [MIB17] that

1.8 Contributions to the Field of Computer Vision

has achieved state-of-the-art results (to which the author of this thesis contributed
the network architecture) and integrating FlowNet2 into object tracking [KBIT19].

1.3 Contributions to the Field of Computer Vision

Frow The work of FlowNet was the first work to estimate optical flow with end-to-
ESTIMATION - end trainable CNNs. The advantages of superior speed/accuracy trade-off and
wiri CNNS - he ability to learn priors have led to a paradigm shift. Since then, many works

have proposed variants and extensions for supervised and unsupervised learning for
flow [YHD16, RB17, RYN'17, SZB17, ZLNH17, LHY17a, MHR18, SYLK18, HTL18§]
and disparity [MIH"16, KMD"17, PSR*17, GAB17, LFG"18].

Speep / The work of FlowNet2 presented results that are on par with state of the art while
ACCURACY heing orders of magnitude faster than any conventional method (see Figure 8.2).
The results highlight crisp motion boundaries, the retrieval of fine structures and
a robustness to compression artifacts. With these features, the work changed the

possible applications of optical flow and has since been used for:

e Video super-resolution [PPSHS18, ZLX18, PPSHS1§|,
e video frame prediction and interpolation |[FAR1S],

e video style transfer [RDB18, GGZY18§|,

e video-to-video synthesis [WLZ" 18],

e facial expression recognition [LZXW18|,

e action detection and recognition [SKH™19, LLR18, HC16, ENT18, TXD™19,
LC18, KDD18, Tkals, TLZ+19)],

e video object detection and segmentation [ZDYW18, LL18a, LSV 18],
e video classification [CAA19, CAA1T|,

e semantic forecasting [TBL18],

e object tracking [ZCZT18, KBIT19, VSFT18, XWW1§],

e video and motion segmentation [NS18, VVB17, XFL18, XFYL18, HWK™'18,
HHC*18, XBZ18, SEG*T18, FAFM15, BWLI18, LL18b, XXFH19, CCL*18,
SAMRIS],

o traffic flow analysis [TDDT*18],

e future person localization [YMYS18],
e vehicle velocity estimation [KMF1§],
e visual odometry [ZLL18, ZSP*18| and

e autonomous driving and robot navigation [STB*18, HMLL18].

Chapter 1 Introduction

OCCLUSIONS
AND MOTION
BOUNDARIES

UNCERTAINTY
ESTIMATES

Together with optical flow, occlusions and motion boundaries are a chicken-and-egg
problem [HR17, PRCBP16|. The extension of FlowNet 2.0 to additionally estimate
these quantities shows that CNNs can perform much better on solving this problem
than engineered methods [ISB18|. Occlusions are ~50% and motion boundaries ~15%
better than state of the art. While this work was recently published, it is expected

that the results will boost action recognition and motion segmentation in the future.

For all applications, it is furthermore vital to know how reliable the actual prediction
is. Previous research has not investigated this question much — in fact only one of
the state-of-the-art methods provides uncertainty estimates [WKR17|. The recent
CNNs presented here outperform this work by a large margin [ICG*18|. Despite
their black-box nature, this shows that CNNs can be informative about their own
limitations and can reliably be used for optical flow estimation in practice.

In summary, the work has introduced CNNs for optical flow estimation to computer
vision, showing that they are able to perform among state of the art while being able
to run in real time and being able to learn better priors, providing the best solution
for occlusions and motion boundaries and being ready for real-world applications by
informing about their prediction’s quality.

SUMMARY

MOTIVATION

SENSORS

2.1

DISPLACE-
MENT
VECTOR

OBJECT AND
APPARENT
MoTION

Chapter 2

Problem Definition

In our everyday lives, we interact with a three-dimensional world. It is natural for us
to know that certain objects have a certain distance, size and speed. We require this
information to infer the scene layout and the actions of others, upon which we decide
and coordinate our own actions. These can be tasks as simple as preparing a meal or
getting dressed — while others are more critical, such as driving a car or crossing a
road.

However, finding out the 3D motion of objects occurring in our surrounding is far
from easy. In the first place, the 3D geometry of a scene can only be measured directly
with active sensors, involving infrared or acoustic signals, and even then only under
well-defined conditions. Sensors that work under general conditions are passive and
cannot measure depth information. This is also the case for our visual system and for
cameras: the perceived information is only a 2D projection of the scene. Figure 2.1
shows an example illustrating this.

Optical Flow

Let I;(x) and Iz(x) denote two different images and = (x,y) a position within an
image. A point P; observed by a camera (shown in Figure 2.1) of an object visible in
I, is projected to image coordinates x;.

When either the object or the camera moves and a second image is taken, the 3D
object is displaced to P, = P; + W in the camera coordinate system. If the point
is still visible in I, its coordinates can again be projected and xo = &1 + w. The
points 1 and s are said to correspond to each other, and the vector w = (u,v) is
called displacement vector.

w resembles the object motion [HS81|, which is not necessarily congruent with the
apparent motion. To illustrate this, some examples are shown in Figure 2.2. While
the ball is rolling, the specular highlight appears to move differently from the ball
in the scene. In the second example, the shadow of the car appears to be moving,
although it does not resemble a moving object itself.

(2.1.1)

2.1 Optical Flow

4
Pl f& Camera Center
Image Plane

Figure 2.1: Illustration of optical flow. The rabbit moves in 3D space. The
illustrated point P; undergoes a change in 3D coordinates to P» = P; + W (shown
in red). A camera with camera center C' observes the rabbit by the 2D projection to
its image plane and sees the 2D displacement xo = 1 + w (shown in blue).

(a) A black ball with a reflective surface is rolling (b) Although it is not a mov-
through a scene, indicated by the red arrow. The ing object, the shadow of the
specular highlight follows some apparent motion car causes an apparent motion.
caused by the light source, which neither corresponds Source: [MG15].

to the ball’s nor its surface motion. Source: [SN19].

Figure 2.2: Examples of apparent motion. The figures illustrate that apparent
motion does not necessarily correspond to object motion.

Early literature defines optical flow as apparent motion [HS81, BR78, WSS85|. In the
first example, this corresponds to the motion of the specular highlight instead of the
ball, while in the second example, the apparent motion is actually undefined. The
reason for this is that the shadow is transparent and one can partially observe the
underlying scene and partially the shadow.

The majority of applications actually requires knowledge about the object motion
instead of apparent motion, as the object motion gives direct information about the
scene. Benchmarks therefore truly measure how well optical flow algorithms estimate
the object motion instead of the apparent motion [BSLT09, BWSB12, GLU12, MG15].
To this end, in this work, we define optical flow as the object motion, corresponding
to the dense field w(x):

The low-level vision task referred to as optical flow estimation is to infer the 2D
object motion w(x) given only the two images I; and Io“.

“Note that optical flow can also be estimated from more than two frames; this is a separate task
and is referred to as multi-frame optical flow estimation.

10

Chapter 2 Problem Definition

MOTION,

2.1.1

DEPTH AND

OBJECT

BOUNDARIES

(2.1.2)

2.1.2

PARAMETRIC

11

FORMS

Motion Boundaries

In the following, the properties of w(x) will be investigated further. Figure 2.3a
shows a moving car. The first observation that can be made is that the boundaries
of moving objects cause discontinuities in the optical flow field (shown in red in the

figure). In this thesis, these discontinuities will be referred to as motion boundaries?.

Motion boundaries frequently occur at the presence of object boundaries or depth
discontinuities (the latter will here be referred to as depth boundaries). For example,
the object boundaries of the car in Figure 2.3a separate it from the background, and
since the car is moving, these object boundaries also result in motion boundaries.
Furthermore, the car has a different distance to the camera than the background,
and thus, the resulting depth boundaries can also be seen as a cause for the motion
boundaries (a small exception is where the wheels touch the ground). However, it is
important to note that while depth and object boundaries are correlated to motion
boundaries, they do not necessarily imply them. In order to see this, one can simply
consider a scene in which nothing moves: while there are many object and depth
boundaries, motion boundaries do not exist.

w(x) contains discontinuities. These are referred to as motion boundaries and often
correspond to object and depth boundaries, but are not necessarily implied by them.
Furthermore, motion boundaries in general do not allow a segmentation, as parts
may be connected seamlessly.

Continuous Regions

As motion boundaries model the discontinuities of w(x), its remaining regions are
by definition continuous. Due to this continuity, a few approaches try to model
these regions parametrically with affine transformations [SSB12, SWS*13, DB15] or
homographies [YL15, HBK*14].

Figure 2.4 shows a simple example of a planar surface rotating in front of the camera:
due to the nonlinear projection of the camera, the resulting displacement field u(z)
in x-direction is nonlinear and can thus not be modeled by an affine transformation.
In this particular example, the transformation could be correctly described by a
homography. However, the general case of nonplanar objects also not be modeled
by homographies. Concluding, homographies and affine transformations can only be
used as local approximations.

In general, w(x) is generated by the 3D motion, the projection matrix and the object
geometry. While the motion and projection matrix can in principle be modeled
parametrically, the object geometry can take any form and therefore prohibits any
general parametric model for w(x). Further problems arise if the object is nonrigid.
This is illustrated in Figure 2.3b. In this case, the object can also not be described
by piecewise parametric functions, as the transition between the pieces is smooth.

Lin the literature, there is often a confusion between motion and occlusion boundaries [SBM*ll,
WRHS15]

(2.1.3)

2.1.3

2.1 Optical Flow

s
I
RN
AR
AR
LR

- - -
-« - -
- - -
-« - -
- - -
-«

SEENRY

-
-
-—
-
-—
-
o
-—

(0 N A O

-« -
-« -«
- -
-« -«
- -
-« -«
- -
-« -
-« -
- -
-« -
- -
-« -

(O N O
(0 N A

N

-
-
-
-

t 4t
t1t
t1t
A
(R
P14

- -
-« -«

t

-
=

(a) Schematic illustration of a car moving (b) Schematic illustration of a deformable ob-

in front of a background. The car is rigid, ject moving. The object cannot be clearly

and therefore the motion boundaries allow to segmented into parts. E.g., there is a smooth

clearly separate the car from the background. motion transition between the leg and the
torso.

Figure 2.3: Rigid and nonrigid objects. Rigid objects can be segmented into
layers, while nonrigid objects cannot. Motion boundaries are shown in red.

Object A Image Plane
[Vg <
«
A Displacement
Field

Figure 2.4: Rotation leading to nonlinear displacement field. The plane
rotates around the indicated axis. The displacement of pixels u(z) in x-direction is
overlaid over the image plane. The simple motion of the planar object leads to a
nonlinear displacement field.

This gives rise to the conclusion:

The continuous regions of w(x) strongly depend on the unknown object geometry
and can in general not be modeled parametrically.

Occlusions

In the 3D world observed by a camera, objects can only change their position over
time, but do not suddenly disappear. However, from an observer’s perspective, an
object may be covered by another object and hence become partially or fully invisible.

12

Chapter 2 Problem Definition

OCCLUSION

AND Disoc-

CLUSION

GROUND

13

TRUTH

A occluded

occluded ~A:

A Image Plane

Figure 2.5: Illustration of occlusions. The red object is partially out of the field of
view. The green object is occluded by the red object. Dotted lines indicate occluded
regions not visible in the image.

Another reason that an object becomes partially or fully invisible is when it moves
out of the field of view. Examples are given in Figure 2.5. Both cases can cause a
pixel that is visible in I to be not visible in Is. For such cases, the pixels are said
to be occluded, meaning that a correspondence in the second image is impossible to
obtain from the observed data and without knowing the objects.

In fact, whenever an object moves, it will cover some of the background and cause an
occlusion. At the same time, it will also uncover some of the background and cause
a disoccluston. For this reason, any type of motion of more than one object always
implies the presence of occlusions and disocclusions, as illustrated in Figure 2.6. If
more than one foreground object with different motions exist, the mutual occlusion
relationships become more complex. In general, the size of an occluded area depends
on the magnitude of the difference of the object’s displacements (in the general
case where both objects move), i.e., small displacement differences cause small
occlusion areas and large displacement differences cause large occlusion areas (see
also Figure 2.6).

It is important to note that for occluded pixels, a ground-truth optical flow still exists,
that is the flow if the displaced object is projected to the second image, regardless
of the occlusion. In the absence of such ground truth, it is sometimes possible to
interpolate the optical flow in occluded areas by analyzing the surroundings. In
the example from Figure 2.6 where parts of the background become occluded, the
flow in the occluded area can be approximately interpolated from the surrounding
background?. Since there is no correspondence data for the pixels in the occluded
area, such an interpolation works well if the background in this area does not move
or has no depth structure, i.e. if the flow field in this area should be smooth. If the
background moves and has depth structure, it is impossible to approximate the flow
field in the occluded area from the given information. Note that the background

2 Note that one needs to know that the foreground object moves in front of the background to
do this (deducible by that the foreground object is still completely visible in the second image).

(2.1.4)

2.14

BRIGHTNESS
CONSTANCY

(2.1.5)

UNIQUENESS

(2.1.6)

2.1 Optical Flow

Small Displacement Large Displacement

Occlusion Occlusion

Image 0 Image 0

Figure 2.6: Occlusions and disocclusions. The left shows a small and the right
a large displacement case. The red object moves to the right. By doing so, it will
occlude part of the background (top) and disocclude another part of the background
(bottom).

could also be any other object and that the explained relationships apply in the
general case:

If the camera or at least one object move, some pixels in an image become occluded.

In this case, no correspondence can be found in the second image and w(x) can only
be interpolated from the surroundings.

Prior Information and the Aperture Problem

If we assume that the lighting conditions do not change and that there are no
occlusions, this implies that apparent motion equals object motion and the observed
pixel has the same appearance in both images. This is commonly formulated as the
brightness constancy criterion:

L(2) = Lz + w(x)).

However, the opposite is not true: pixels that have the same appearance do not
necessarily imply a correspondence. This is due to the fact that many pixels may
have the same appearance, which gives rise to one of the major difficulties in optical
flow estimation. The worst-case scenario would be if I; is homogeneous, i.e. only

shows a single color value. In this case, the appearance of all pixels is the same, i.e.

it is not possible to infer any correspondence, and any motion could be possible. This
is illustrated in Figure 2.7a. Apart from the high and often infeasible computational
complexity of optical flow, this means that even a brute force algorithm traversing the
whole solution space cannot find the correct solution and priors are required instead:

Estimation of w(x) is not well-defined and priors are required. Correctness of priors
highly influences the estimation quality.

14

Chapter 2 Problem Definition

15

PRIORS

+

Image 1 Image 2

(a) In both images, there is no structure. For the location marked in the first image, the
correspondence could be any location in the second image. The most plausible prior for a
human is that nothing moves in the scene.

r_
v

?

Image 1 Image 2

(b) We extend the example by a vertical line on the background, moving horizontally. For the
location close to the line, a possible interpretation is that this location moves similar to the
line; in fact, the most plausible prior for a human would be that it also moves horizontally.

=%

Image 1 Image 2

(c) The object is now replaced by a star. The edges narrow down the correspondences to
distinct locations. The most plausible prior would be that the star does not rotate, but in
general, any of the indicated correspondences would be possible.

¥ W

Image 1 Image 2

(d) There are now unique edge and color features on the object that exactly determine the
correspondence.

Figure 2.7: Homogeneous areas and features. Possible correspondences are
shown with gray arrows. Green arrows indicate the most plausible prior of a human,
and red arrows indicate a uniquely determined correspondence.

In the homogeneous example from Figure 2.7a, the most plausible prior for a human
would be that nothing is moving (zero motion). This prior allows for obtaining a
plausible w(x). However, note that priors fill the definition gap through assumptions
that are true in the majority but can also be false: While in the largest number of
cases, the zero motion is a plausible explanation for Figure 2.7a, in some cases, it
might not be true and even human judgement would be wrong.

We extend the example to a line moving right, as illustrated in Figure 2.7b. Now
a human would judge the image content to be moving to the right even in the
homogeneous areas, i.e. due to the line feature, a motion in the neighboring areas
is assumed. In the homogeneous areas, this solution is still only determined by the

(2.1.7)

PIXEL
COMPOUNDS

(2.1.8)

2.1 Optical Flow

Figure 2.8: Illustration of the aperture problem. Three different background
objects are shown that are moving in the directions top-left, up and left. The
background object is covered by an aperture. When looking through the aperture,
none of the three motions can be distinguished and are perceived identically. The
true motion can only be determined when considering the whole context (i.e. seeing
the whole background object). Thus, the plausible motion strongly depends on the
aperture or the extent of the considered pixel compound.

prior and might be wrong but is the most plausible one. Note also that it is in
general still unknown if the whole image content moves up or down, since the line
gives a feature to explain only horizontal motion. Another, completely different
possible interpretation is that the blue line is part of a static background covered
by a moving white foreground with a slit. The true solution cannot be determined
because white and blue areas are featureless. This insight gives rise to the following
simple statement:

Good estimation of w(x) requires unique features.

In order to obtain a feature, a compound of multiple pixels needs to be considered.

Examples are given in Figures 2.7c and 2.7d. The star is moving and a human can
clearly tell its motion. Although the color inside the star is still homogeneous, the
presence of many edge features increases the confidence that the star comprises an
object and moves consistently. In summary, motion cannot be determined locally but
only by considering a neighborhood, here referred to as a compound of pixels. This

introduces another very difficult problem: determining the correct size of a compound.

The aperture problem depicted in Figure 2.8 illustrates that different compounds are
connected to different motion priors. If a compound has a certain boundary feature
(aperture), the assumed prior motion can significantly differ. To summarize:

Features consist of pixel compounds. Plausible sizes and connectivities for such
compounds are determined by prior information and are not easy to obtain. The
influence of the selected compound to the solution is illustrated by the aperture
problem.

This presents another problem of optical flow estimation: while the basic complexity
of optical flow is already high, a search for all possible compounds is infeasible.

16

Chapter 2 Problem Definition

Prior

SELECTION

17

2.2

— epipolar line

Figure 2.9: Epipolar geometry. The left camera observes a point x. The source
3D point P must lie on a line, which projects to the epipolar line in the right camera.
By finding the 2D correspondence x’, the point P can be uniquely determined.

Figure 2.10: Disparity example. The example shows the left and the right images
from a stereo camera and the ground-truth horizontal displacement, referred to
as disparity (data from [BWSB12|; the visualization actually shows the negative
disparity; low intensity represents a high disparity and vice versa).

This section has shown that prior information providing assumptions about object
size and articulation play a very significant role. Such priors are actually necessary
to overcome the ill-definedness of optical flow estimation and to integrate semantic
knowledge depending on the image content. Such knowledge cannot be engineered
well or only in a very limited form. While traditional techniques only integrate the
very simplest prior of local smoothness (presented in Section 3.2), in this thesis, we
argue that this is not sufficient. The key contribution is a learning approach that is
able to learn sophisticated priors from data.

Disparity

Section 2.1 described that optical flow arises due to object or camera motion. The
optical flow then represents the correspondences in the 2D projection. Assuming
now that a scene is static and that the camera motion is known or fixed, such
correspondences can be used for 3D reconstruction with the principle of triangulation.
This is illustrated in Figure 2.9. In order to determine the depth of a point P, its
correspondence x’ needs to be determined. This correspondence is restricted to lying
on the epipolar line. For this reason, the problem of depth estimation is a constrained
optical flow estimation problem with one degree of freedom along the epipolar line.

STEREO
CAMERA

DISPARITY
AND DEPTH

2.3

REDUNDANCY

JOINT
EsTiMATION

2.3 Scene Flow

Time Left Right

t ‘ dr Rt > .

W, bty |= (’Lh U) w

@ ~@

; dr_ry,
\]

Figure 2.11: Scene flow definition. At times ¢; and to, the left and right images
are recorded. The scene flow consists of the optical flow, the disparity and the change

in disparity: s = (u,v,d,w) width d = dr R, .

If the camera is furthermore displaced only horizontally, the epipolar lines also become
horizontal. In this case, the optical flow can only be in the a-direction, i.e. w = (u,0)
and is referred to as disparity, where the disparity is defined as d = —wu. Instead
of displacing the camera, the images for disparity estimation are recorded with two
cameras mounted onto a rig (referred to as a stereo camera). Since the images are
recorded simultaneously and the relative displacement of the cameras does not change,
the assumptions that the scene is static and the camera motion is known are valid.

The estimated disparity is then inversely proportional to depth, as shown in Figure 2.10
(the visualization actually shows the negative disparity, which illustrates the depth
structure of the scene), i.e. a high disparity corresponds to a close object and a low
disparity to a distant object. The exact conversion between depth and disparity can
be computed when the camera parameters are known. However, the advantage of the
disparity over the depth representation is just that these parameters are not required
and that disparity is a representation independent of the specific camera.

Scene Flow

Using a stereo camera to record images Iy ; and Ig; over time allows to compute
disparities d;,—r, and dr Ry, as well as the optical flow wp ¢, ,. The optical
flow (u,v) that represents a change in z- and y-direction can then furthermore be
extended by a third component w, representing the disparity change, as illustrated in
Figure 2.11. The combination of optical flow and the disparity change is referred to
as scene flow s = (u,v,d,w) width d = d_ gy, [VBRT05, HD07, VSR15.

If the camera parameters are known, scene flow can be converted to the 3D motion of
the underlying scene and is therefore fundamental for many robotic applications. If
disparities and optical flow are estimated separately, estimating the disparity change
is almost redundant, since it can be computed by subtracting the warped second
disparity from the first. This holds up to the occluded regions where the disparity
change needs to be interpolated similarly to optical flow.

However, despite the higher complexity, there can be a large benefit in estimating
disparities and optical flow jointly [HDO7|. First, if correct disparities were known,
optical flow estimation becomes much easier because the additional disparity input

18

Chapter 2 Problem Definition

19

2.4

24.1

2.4.2

(b) Sintel [BWSB12] color visualization

Figure 2.12: Optical flow visualization. For the respective variants: left shows
an image and middle shows the visualization of the motion to the next image. The
direction of the flow field is visualized by hue and the magnitude by saturation. This
is illustrated on the right. For the given exemplary flow vector, the resulting color for
visualization is shown in the small box.

is highly discriminative for the input pixels. This eases the problem described in
Section 2.1.4. Second, if correct optical low was known, correspondence search for
disparity also becomes more robust due to the additional constraint in both image
pairs. It is therefore beneficial to jointly estimate optical flow and disparity for scene
flow.

Evaluation

Visualization

For evaluation purposes, optical flow is commonly visualized by using a color circle,
as illustrated in Figure 2.12. In order to visualize a flow vector, the vector is placed
at the center of the circle and the color value at the head of the vector is used to
visualize the pixel. So as to account for different motion magnitude ranges, flow
vectors in an image are commonly prescaled by a factor to select the best range of
the flow vectors to fall into the circle.

Two common versions exist: the Middlebury [BSLT09] (Figure 2.12a) and the Sin-
tel [BWSB12| (Figure 2.12b) color schemes. If not stated otherwise, in this work, the
Sintel visualization will be used.

Error Measures

The evaluation of optical flow is performed by comparing the estimated flow to
the ground truth, which is obtained from object motion (contrary to the definition
of optical flow in early works as the apparent motion [HS81, BR78, WS85]|). The
commonly used error metrics will be explained in the following:

ENDPOINT
ERrRROR

(2.4.1)

ANGULAR
ERROR

(2.4.2)

THRESHOLDS

REGIONS

2.4 FEvaluation

10 100
9 - 90
A
: 8 I 80
:«—— Scaled by s
: —~ 7 L 70
a
&
= 6 - 60
55 50
b1
24 - 40
5, k30
2 k20
1 F10
0 . T . : : T . 0
0 1 2 3 4 5 6 7 8 9 10

Scale (s)

Figure 2.13: Endpoint vs. angular error. In order to demonstrate the meaning of
the endpoint and the angular error, we compute the error between two unit orthogonal
flow vectors (left) when scaling both with coefficients ranging from 0 to 10. The
EPE grows linearly with the vectors while the AE grows fast for small vectors and
saturates to 90° for large vectors.

The endpoint error is the most common metric and simply computes the magnitude
of the difference between estimation and ground truth [ON06, BSLT09]:

EPE = [|w — w?|| = v/{u — us)? + (v — 082

Note that for small flows, errors are usually small, and for large flows, errors are
usually large. When computing the average over a dataset, image regions with large
flows therefore tend to contribute to the average error significantly stronger and
dominate the error.

The angular error computes the angle between the predicted and the ground-truth
vector by extending them to 3D vectors |[BFB94|:

u ust
AE=KL v, [8
1 1

The extension to 3D vectors is done so as to avoid division by zero and to account for
the magnitude of the vectors. Errors in large flows are penalized less [BSLT09], and for
large flow vectors, the measure converges to the angular difference (see Figure 2.13).

Other benchmarks compute the endpoint error and then count the number of pixels
that fall above a certain threshold [GLU12, MG15|: tE measures the percentage of
pixels that have a higher error than F.

Measuring the errors in distinguished regions of the image allows to further assessing
the properties of estimated flow fields, see Table 2.1 [BWSB12|.

20

Chapter 2 Problem Definition

2.4.3

RiGIiD
REAL-
WORLD
SCENES

NONRIGID
REAL-
‘WORLD
SCENES

SYNTHE-
TICALLY
GENERATED
DaAta

21

non-occ error in regions that are visible in
the second image

occ error in regions that are not visible
in the second image

d0-10, d10-60, error in regions with different

d60-140, d140+ distances to motion boundaries

s0-10, s10-40, error in regions of different motion

s40+ magnitudes

Table 2.1: Error regions. In order to assess the properties of estimated flow fields,
[BWSB12| proposes to measure errors in different regions. “+” indicates an open
range.

Benchmark Datasets

In order to assess the performance of algorithms, it is vital to have test cases that
reflect real-world scenarios well. Since optical flow is a secondary feature, there is
no sensor that can directly capture optical flow. This makes it a challenging task to
obtain good test datasets. Existing approaches are described in the following:

In arigid real-world scene, the scene geometry can be captured by using structured-
light or range scanning [BSLT09]. With a registration technique, the transformation
between two instants of time can be computed. The scene geometry and the transfor-
mation together allow for inferring the optical flow.

For nonrigid real-world scenes, the optical flow for the ground truth needs to
be computed with an algorithm itself. One can increase the accuracy significantly
by using hidden fluorescent texture [BSL*09] or high-frame-rate cameras [JGW117].
The first requires that the scene is modified and explicitly prepared, while the second
requires special lighting conditions.

Rendering synthetic scenes gives the most control and the highest accuracy of the
obtained optical flow fields. The difficulties are that creating photo-realistic image
data is not trivial and that it is not obvious which aspects of the real world are relevant
and must be modeled, since it is not possible to model all aspects perfectly [MIFT18].

The four common available benchmark datasets that serve for optical flow evaluation
and their properties are shown in Figure 2.14. For a complete survey please refer
to [MIFT18|.

2.4 FEvaluation

[Flow]

(a) The Middlebury dataset [BSL109] comprises a mix of real and synthetic scenes with
small displacements. 8 training and 8 test image pairs are provided. Invalid regions are left
white in the flow visualization.

Loy

. q

(b) The Sintel dataset [BWSB12] is rendered from a synthetic movie and comprises 23
training and 13 test datasets with 1,064 and 564 images respectively. The dataset models
challenging cases with homogeneous areas and large motions. An additional final version
with atmospheric effects and motion blur is also available (as given in the example). Ground
truth for occluded areas is provided.

[Elow]

2°f \\ o AN / =T
(c) The KITTI 2012 dataset [GLU12| comprises 194 training and 195 different test image
pairs. Pedestrians and scene are assumed to be static and are recorded by using a laser-
range scanner, resulting in a sparse ground truth. Invalid regions are left white in the flow
visualization. Fast-moving objects are excluded from the ground truth, such as the car to
the right.

(d) The KITTI 2015 dataset [MG15] comprises 200 test and 200 training image pairs. The
dataset is recorded similar to the 2012 version, except that, when available, CAD models are
fitted to moving cars (see dense ground truth for cars). In the example, the white truck in
the background is excluded due to a missing model, and the pedestrian at the traffic light on
the right is also excluded due to motion.

Figure 2.14: Overview of benchmark datasets.

22

DIFFICULTIES

23

3.1

(3.1.1)

HOG

Chapter 3

Traditional Approaches

Chapter 2 indicates that optical flow estimation is a hard problem consisting of
discontinuities that are not always implied by image or depth boundaries (State-
ment 2.1.2), continuous regions that can in general not be modeled parametrically
(Statement 2.1.3), pixels that disappear (Statement 2.1.4) and the need for prior
assumptions (Statement 2.1.6). Optical flow estimation has been a research field for
almost 40 years [LK81|, yet it is still referred to as an “unsolved problem” [FBK15|.

The following presents the major concepts that have evolved and shows their respective
advantages and disadvantages. Only the core concepts will be presented here that
give an intuition of the problem and the findings of the past. Some of these intuitions
are very important and serve as a motivation for the alternative approach taken in
this thesis. For details of the traditional methods we refer the reader to the summary
in [FBK15] and the respective works from the authors as cited.

Feature Descriptors

The past chapter explained that a single pixel is not enough to establish a correspon-
dence and that it is necessary to consider compounds of pixels (Statement 2.1.8).
Such a compound can be a local patch and can be represented by a descriptor:

Descriptors summarize a local region of an image in a discriminative feature vector.
Despite a compact representation, the goal of the feature vector is to be invariant to
any appearance transformations, such as deformations and lighting conditions.

The simplest variant is to use the color values of the pixels in the region. However, such
a simple aggregation of color values is vulnerable to any appearance transformations.
The challenge of descriptors is thus to extract the important information from a
patch, which can uniquely identify the patch and discriminate it from others.

The most common variant is the Histogram of Orientations (HOG) descriptor [DT05],
which is illustrated in Figure 3.1. Using gradients instead of color values makes the
descriptor invariant to additive brightness changes. In order to allow for deformations,

SIFT

CENSUS
TRANSFORM

HANDCRAFTED
vS. LEARNED

UNSUPERVISED
LEARNING

3.1 Feature Descriptors

Gradient Computation Binning + Aggregation Smoothing Feature Vector
+—>
sl *le |t Al oA,
: : S
NEYLELE L L
T S —— N S “RAAPAY K
- i * > el
<« ~a| » ¥ o o ¥
AX>AV K
x > > | <+ > > ¥ » » I . »
P al
l S M { “RAA>PAY K
R R [TH]
L w A4
| > > G “RAA>PAY K

Figure 3.1: Concept of HOG descriptors. In the first step, image gradients
are computed. They are then spatially aggregated into bins. In order to increase
invariance and robustness, the resulting histograms are then smoothed in spatial and
in bin direction. Finally, the histograms are aggregated to a feature vector.

the gradients are then binned into eight possible directions and spatially aggregated.
Since values close to the bin boundaries may cause some abrupt changes, the next
step is to perform smoothing in spatial and in bin direction. Finally, the bins are
aggregated to a feature vector. The common input patch size is 16x16 pixels, which
results in a 128-dimensional vector.

While the HOG descriptor is invariant to slight appearance changes, the Scale Invariant
Feature Transform (SIFT) |[Low04| adds complete rotation and scale invariance. This
is achieved by first aligning to the dominant orientation and by using the characteristic
scale to compute the descriptor among the right spatial extent. Other extensions of

gradient histograms are GLOH [MS05|, SURF [BETVGO08| and DAISY [TLF10].

A descriptor that is also commonly used in optical flow and has the strongest
illumination invariance is the Census transform [ZW94]. In this variant, the center
pixel is simply compared to the other pixels in the patch. The stored value is 0 if the
outer pixel has a larger value than the center pixel; otherwise, the value is 1. For a
detailed study, please refer to [HDW13].

The descriptors mentioned so far are all handcrafted, i.e. humans design heuristics
to extract and summarize the important information of a pixel compound. Since
the question which information is important depends highly on the data itself, it is
reasonable to use a machine learning approach to find the best descriptors. Fisher et
al. [FDB14| show that for matching, even the features from a CNN trained for
classification outperform the handcrafted SIFT descriptors. Furthermore, descriptors
can be trained to be explicitly optimized for the matching task. If ground truth is
available, one can use a Siamese network architecture and a triplet loss, so as to
minimize the distance to matches and to keep the distance to mismatches sufficiently
large [WS09a, ZL14, LTC17, XRK17].

It is even more interesting to train for discriminative descriptors from unsuper-
vised data. Dosovitskiy et al. [DFST16] use a large set of surrogate patches and
train a network to identify each of the patches under various input transformations.
These transformations ensure that the CNN can reduce the patch to the important
information regardless of its exact appearance while still being able to discrimi-

24

Chapter 8 Traditional Approaches

DISCRETI-

25

(3.1.2)

3.2

(3.2.1)

(3.2.2)

(3.2.3)

ZATION

nate it from others. Similar approaches are the jigsaw puzzle approach [NF16] and
split-brain autoencoders [ZIE17]|. In summary:

Optimal descriptors highly depend on the data. Recent works have shown that learned
descriptors significantly outperform the engineered approaches [Z1.14, XRK17, FDB14,
DFS*16, NF16, ZIE17].

Energy-Based Methods

Most traditional methods regard optical flow and disparity estimation as an optimiza-
tion problem |[LK81, HS81, BBPWO04, BM11|. This requires the formulation of an
objective in terms of an energy function. The two most general assumptions that can
be be deduced from the problem definition in Chapter 2 are:

Appearance Similarity. As described by Equation 2.1.5, object motion implies
appearance similarity. This is a necessary but not sufficient criterion for correspon-
dence (Section 2.1.4). Appearance can be modeled by grayscale, color and image
gradients [HS81, BBPWO04, BM11| or with descriptors (see Section 3.1). In the energy
function, the appearance similarity is modeled as the data term Ep.

Local Smoothness. As described in Section 2.1.4, individual pixels are not enough
and even larger structures can still be ambiguous and not sufficient to establish a
correspondence. In general, the required compound size is unknown and depends on
the image data; it can potentially span the whole image. The most general assumption
that can therefore be made is that a pixel exhibits similar motion to its neighbors
(with few exceptions among motion boundaries). This is modeled by the smoothness
term Eg.

Both assumptions are then combined in an energy that is to be minimized with
respect to the optical flow field w:

E(w) = Ep(w) + aEs(w),

where o determines the trade-off between both terms. The concrete implementation
of this energy function can be either in a continuous or in a discretized space and
past research has investigated all kinds of variations [HS81, BBPW04, BM11, LYT11,
XJIM12, KK12, SSB12, SWS*13, XRK17]. It is very important to note that occlusions
cause fundamental violations to the data, and motion boundaries to the smoothness
term. In this model, these violations cannot be resolved and are considered outliers.
Implementations must therefore be designed to be as robust as possible to such
outliers [BA96, MP98, BBPWO04|. However, with more and more of these outliers
(especially for large motions), the model becomes inaccurate and will eventually fail.

In general, a discretization of w means to quantize the flow into predefined labels
and allows for treating the problem with combinatorial optimization. Since for
optical flow, the label space is very large and general combinatorial optimization is
NP-Hard, this is often infeasible or requires overly high runtimes, and the solution
can therefore only be approximated. Treating w continuously allows for employing

3.2.1

(3.2.4)

Prior
MODELING

LINEARIZATION

(3.2.5)

GRADIENT
CONSTANCY

3.2 Energy-Based Methods

the calculus of variation (referred to as variational techniques) but requires E to be
convex for the optimization to be able to descend to the global minimum. In general,
variational techniques are faster but limited by the convexity constraint. For this
reason, the predominant method for the less complex disparity estimation problem is
combinatorial optimization [KZ01la, KSK06, SHLC09, Hir05|, while for optical flow,
it is variational techniques [HS81, BBPWO04].

Variational Methods

The pioneering work of Horn and Schunck [HS81| proposed to treat images as
continuous functions and to implement Equation 3.2.3 as follows:

E(w) = / (L@ + w) — Li(@) +a [||Vu(@)|]* + [|Vo()|?] da.

Ep ES

The first part implements the data term and is the brightness constancy criterion
(Equation 2.1.5). The second part implements the smoothness term that locally
connects pixels and serves as a regularizer. This regularizer can also be seen as a
prior that prefers smooth flow fields (see Statement 2.1.6). The hyper-parameter «
controls the influence of this prior. Note that a second prior is the initialization of
the optimization with the zero solution.

A fundamental problem is that the image is a highly nonlinear function. In order
to obtain a solution, Horn and Schunck therefore propose a linearization of the first
term:

L(x+w)—I(x) =
e Iut+ I+ I, — I (x) =
= IQ@U + Ig,yv +I, = 0,

where indices x,y,t indicate spatial and temporal derivatives. The third equation
is referred to as the optic flow constraint. With the linearization in place, the
energy function 3.2.4 becomes convex. Obtaining the Euler-Lagrange equations and
discretizing leads to a linear system that can be solved to find the global optimum.
However, images are highly nonlinear in general. The problems that arise from this
linearization are shown in Figure 3.2 (see next page). In general, the linearization
limits the approach to small displacements, as images are approximately linear only
locally. Depending on the amount of nonlinearity in the image, this can be within the
range of one pixel. Furthermore, outliers due to occlusions and motion boundaries
can severely influence the solution. In order to weaken the effect of the latter, a
robust penalty function ¥ can be used [BA96, MP98, BBPW04|, which minimizes
the influence of outliers while still maintaining the convexity of Equation 3.2.4.

Brox et al. [BBPWO04] later extended the data term by gradient constancy. While
the gradient term is not invariant to rotations, it adds more invariance to brightness
changes. Xu et al. [XJM12| claim that the combination of both terms can often be
suboptimal and that one needs to further optimize for a weighting factor between
them.

26

Chapter 8 Traditional Approaches

GAUSS-

NEwWTON

27

(3.2.6)

Image intensity Image intensity Ground Truth

—]

Estimation (u)

Tangent I, ,(z)

I=L(x)-1,(x)

Ground: Truth Tangent I, ()

Estimation (u)

Position Position

X X

(a) The image shows a piecewise linear 1D im- (b) The same case for a highly nonlinear 1D
age. Following the tangent to obtain I> ;u = image, as is the case for most real images.

—1I; allows for obtaining the ground-truth so- Following the tangent to obtain I ;u = —1I;
lution exactly. yields a solution that is far off from the ground
truth.

Figure 3.2: Effect of linearization. The linearization of the Horn and
Schunck [HS81] method works for piecewise linear images but fails for nonlinear
ones.

In order to overcome the problems associated with linearization, Brox et al. proposed
to keep the nonlinearity and to solve Equation 3.2.4 with the Gauss-Newton method.
To demonstrate this a simplified version shall be shown here. Not linearizing the data
term from Equation 3.2.4 requires finding its minimum by setting the first derivative
to 0. Assuming that u would be a scalar, this leads to:

%(Ig(a:—l—w)—Il(:B))2 = 0

@2([2(3:—1—10)—I1(:B))%Ig(m+'w) = 0.

Defining I, = Iy(x + w) — I 1(x) and I, = %Ig(w + w) gives:
I.I, = 0.

In order to fulfill equation 3.2.6, it is sufficient that I, = 0. Using Gauss-Newton, we
define an iterative scheme and linearize the update step:

I = L(z+w") - I(x)
= DL(x+w") + Ldu" + I dv* — I(x)
= Ifdu" + I} dv" +1F

The algorithm then iterates u**! = u* 4 du® and v**1 = v* 4 dv¥. It is important to
note that the linearization is only performed for the update step, which is a much more
local criterion than the global linearization from Equation 3.2.5. The linearization
always occurs on the second warped image, i.e. at the current solution = + w*. Note
that the example here is only a sketch and strongly simplified; in general one needs

COARSE-TO-
FINE

LIMITATIONS

3.2 Energy-Based Methods

Global Minimum Global Minimum

(a) A case demonstrating successful (b) A failure case in which the local
convergence to the global minimum. minimum is too narrow (frequently
appearing with small objects) and the
minimum is incorrectly smoothed out
in the coarse level, leading to a sub-

optimal solution.

Figure 3.3: Energy descent for nonconvex functions. Spatial pyramids operate

on different levels of smoothing from coarse to fine (top to bottom in the Figure).
On each level, a minimum is obtained and used for initialization of the next level.

Local minima are indicated in gray.

to consider u and v as continuous functions, add also the smoothness term, integrate
over the image domain and use the Euler-Lagrange equations. For a more detailed
derivation, the reader is referred to [Brol§|.

Using the Gauss-Newton method allows for solving the nonlinear Equation 3.2.4.

However, as I is nonconvex, the energy also becomes nonconvex which in turn means
the method can in general converge to a local minimum instead of the global one. In
order to mitigate the danger of local minima, Brox et al. [BM11] employ a spatial
pyramid, i.e. they start with strongly smoothed images to allow for a coarse estimation
of large structures and then proceed to sharper images for refinement. This concept is
illustrated in Figure 3.3. Technically, the smoothing is implemented by downsampling
and is commonly also referred to as a coarse-to-fine approach [BBPWO04].

The coarse resolution allows for identifying large displacements of large compounds,
while the fine resolution allows for the identification of small displacements of small
compounds. This introduces a dependency between displacement and object size:
while it allows to solve for large displacements, the object size also needs to be
sufficiently large, otherwise it will be smoothed away on the coarse levels of the

28

Chapter 8 Traditional Approaches

(3.2.7)

DESCRIPTOR
MATCHING

29

Figure 3.4: Elastic deformation to register images. The surfaces represent
image intensities. The green image is to be elastically deformed by a flow field w to
match the orange image. A) shows a case where the correct deformation can easily
be obtained with the Gauss-Newton method. B) shows an ambiguous case where the
solution is not uniquely determined. C) shows a case where the displacement is too
large to obtain a solution with energy minimization, so that descriptor matching is
required. Depending on the smoothing coefficient «, it may not be possible to reach
the solution, because close-by D) is already at a local minimum.

spatial pyramid (see Figure 3.3b). The method therefore succeeds in finding large
displacements of large objects, but fails for large displacements of small objects. This
is especially the case for small body parts that can move very fast [BM11]| and leads
to the following conclusion:

Variational methods can solve very well for sub-pixel-accurate displacements. They
are doomed to fail where the motion of a small-scale structure is larger than its own
scale [BM11].

An approach to mitigate this limitation is to use descriptor matching which can
capture pixel compounds that correspond to small objects. In their work called
Large Displacement Optical Flow (LDOF), Brox et al. [BM11] propose to use nearest-
neighbor descriptor matching and to integrate it into the energy function:

E(w) = Eecolor (w) + 7Egradient(w) + aFgnooth (w) + ﬂEmatch(wy wl):

where the last term enforces similarity of the estimated flow field to previously
determined matches w;. The matches obtained with nearest-neighbor matching do
not follow a regularization and can be very noisy. However, since the descriptors are
integrated into a variational method here, it is expected that the variational method
will perform the necessary regularization; in addition to that, some pre-filtering is
performed.

Intuitively, the explained variational techniques can be imagined as treating the
images as two surfaces (with the height indicating color intensity) and elastically
deforming the second surface by “sliding” it onto the first one. This is illustrated in
Figure 3.4. If the initial solution is too far away from the correct one, a local minimum

(3.2.8)

3.3

COMPLEXITY

MoTION
CANDIDATES

LAYERS

SGM

3.3 Combinatorial Methods

might lie in-between. If the smoothness term is high, the neighboring solutions can
also “pull”* the solution over the local minimum (but overly high smoothness terms
discourage discontinuities in the flow field and a trade-off needs to be made). The
spatial pyramid approach solves this by bringing the solution close to the correct
one on a coarser resolution first, provided that the object size is large enough. In
summary:

Variational methods require descriptor matching in order to work for large displace-
ments of small objects. This brings us back to the beginning of obtaining high-quality
and well-regularized descriptor matches.

For this reason, the work of Brox et al. [BM11] turned the focus of the field to
investigating many descriptor matching techniques [XJM12, WRHS13, LZS13, BTS15,
WFR*16, GG16b, XRK17|. Some works even conjecture that descriptor matches
are the main step towards the solution and that sub-pixel-accurate results can be
obtained by a mere interpolation of descriptor matches [RWHS15].

Combinatorial Methods

Combinatorial optimization can handle arbitrary energy functions, but is not feasible
for optical flow in a general form due to the large label space. E.g., for a VGA image
there are more than 300k possible labels per pixel.

In order to reduce the possible labels, approaches therefore try to find few possible
motion candidates first which then serve as the possible label set. Motion Detail
Preserving Flow (MDPFlow) [XJM12]| tries to extract possible candidates by finding
the dominant motions from SIFT matches in the image, in addition to the nearest
match from patch matching. They then use QBPO [RKLS07] to optimize an energy
function of the form of Equation 3.2.3.

DiscreteFlow [GG16b| uses a hierarchical search to find the K best neighbors from
DAISY |TLF10]| descriptors and then proceeds with optimizing a similar energy
function using BCD [CK14|. Drayer et al. [DB15] propose a combinatorial refinement
of an initial matching field with affine hypotheses.

Other approaches try to introduce depth ordering and layers into optical flow [SSB12,
SWS*13]. (Note that due to Statement 2.1.2, the segmentation of optical flow is
generally not possible and this can only be an approximation.) Given approximate
layers and depth ordering, occlusions can also be inferred and integrated into the
energy function, which is then finally optimized by using QBPO [SSB12] or variational
EM [SWST13].

In disparity estimation, large displacements are more predominant and less labels
are required. Combinatorial methods are therefore much more popular for this
task [KZ0la, KSK06, SHLC09| which can be approximated and implemented very
efficiently with Semi-Global Matching (SGM) [Hir05]. The work of Xu et al. [XRK17]
named DCFlow recently presented an approach that extends SGM also to optical
flow.

30

Chapter 8 Traditional Approaches

3.4

3.4.1

31

T T N

ref image

target image

LLZILT 7777 Vo i i
(a) (b)

Figure 3.5: DeepMatching aggregation step. In order to compute the response
of a larger patch, the responses of smaller patches are first max-pooled (right) and
then aggregated. Source: [WRHS13].

4x4 patches response maps (virtual) 8x8 patches (virtual) 16x16 patches

f i
ref image i o for each patch

level 2's
r(‘sponso maps

level 3's
response maps

tar; got image

quasi-dense
correspondences
extraction

)
» local maxima » » Optical flow
7 detection

i sparse non-linear
1 (convolutions filtering

Figure 3.6: Concept of DeepMatching. 4x4 patches are used to compute dense
HOG descriptor maps in both images. For each patch in the reference image, a
response map is created by convolving the patch with the second image. The response
maps are then aggregated as illustrated in Figure 3.5. The aggregation happens
by max-pooling, sub-sampling and summing up the smaller patch’s response values.
Repeating the procedure yields a multi-size response pyramid from which maxima
are extracted and backtracked to the images in order to obtain correspondences.

Source: [WRHS13].

Heuristics

Section 3.2 explained that variational approaches rely on accurate precomputed
descriptor matches. Obtaining such matches with an energy minimization framework
for optical flow is not feasible in general. For this reason, many heuristics have been
developed and some selected ones will be presented here. It is interesting to compare
to these heuristics, as the neural networks presented in this work also resemble a
different variant of heuristic.

DeepMatching

DeepMatching by Weinzaepfel et al. [WRHS13] is a heuristic to obtain regularized
descriptor matches. The algorithm is motivated by deep networks (although it has
no learnable weights and is different in nature). The concept transferred from deep

AGGREGATION
AND PooLING

FINE-TO-
COARSE

3.4.2

3.4 Heuristics

E B - S
Safh FA Y.
LT L2 "™y

s Ll W

(a) Horizontal (b) Vertical

Figure 3.7: PCA-Flow basis. The first 12 components for the basis learned by
PCA-Flow from 120,000 frames. Separate components are learned for horizontal and
vertical direction (shown left and right). Source: [WB15].

Figure 3.8: PCA-Flow reconstruction. The Figure shows the reconstruction of
the ground truth (left) through the learned basis (right). Source: [WB15].

networks is the aggregation and pooling. In order to compute the score of a larger

feature match, the scores of the composing parts are aggregated and max-pooled.

This is illustrated in Figure 3.5.

The whole algorithm is illustrated in Figure 3.6. The first step of the algorithm
is to compute dense response maps for all descriptors. Taking the maximum of
these response maps would yield nearest-neighbor matching. However, DeepMatching

proceeds with max-pooling and spatially aggregating them (i.e. summing them up).

Repeating this aggregation yields response maps for different resolutions (capturing
different receptive fields). Thereby, a large patch has a high response value if the
composing small patches also have high response values. The small patches may vary
their positions slightly in this process, which allows for some limited deformations.

In order to obtain final correspondences, maxima are then extracted from the response
pyramid. At different levels, they resemble different object sizes. The maximum
is finally tracked back through the pooling operations to obtain the dense image
correspondences. Note that the algorithm already takes correspondences as input
instead of images. It therefore only serves as a regularization by aggregating consistent
regions to larger compounds and can be seen as a fine-to-coarse approach.

PCA-Flow

PCA-Flow by Wulff et al. [WB15| takes a different approach and represents the flow
field for an image pair through a linear combination of basis vectors:

N
w = E Ozibz’
i=1

32

Chapter 3

Traditional Approaches

Figure 3.9: PatchMatch and FlowFields propagation.

Left: (occlusions masked out with ground truth) a) shows the FlowFields solution
obtained only from the two seeds shown in b). ¢) shows the FlowFields solution
obtained from the k-d tree nearest-neighbor matches shown in d). e) shows the
FlowFields results without hierarchies (without large distance propagation). f) shows
the ground truth. Notably, the algorithm can already achieve very good results with
only two seeds. Using the full k-d tree initialization with hierarchies gives the best
result c).

Right: g) shows overlaid images with large displacement. i) shows the matches
obtained with approximate nearest neighbors. Notably, the flow field is noisy due
to the approximate search. h) shows the flow field obtained by FlowFields. There
are significantly less outliers, but due to the missing regularization, some outlier
regions remain. j) shows the flow field after removing outliers with forward-backward
consistency checks.

Source: [BTS15].

Learnep The basis itself is learned from data. They use 120,000 frames from Hollywood

33

Basis

3.4.3

movies with flow computed by GPUFlow [WTP109]. The basis is then extracted by
using principle component analysis (PCA) and has 250 components for horizontal
and vertical direction respectively (500 in total). The first twelve components of the
learned basis are shown in Figure 3.7 (see previous page). Interestingly, the basis
resembles the basis functions of a Discrete Cosine Transform (DCT).

Given a new image pair, estimating the flow field then becomes the task of finding
the coefficients «;. To this end, they use sparse nearest-neighbor descriptor matching
and solve for w with linear least squares. The method relates to this work in that it
uses learning and runs in real time.

PatchMatch and FlowFields

PatchMatch by Barnes et al. [BSFG09]| constitutes a fast algorithm for computing
dense matches. In the original implementation, these descriptors are image patches,
but in principle, the algorithm can work with any descriptors. The key idea of the
algorithm is to propagate good solutions. The algorithm works as follows:

PROPAGATION
ALGORITHM

3.5

(3.5.1)

MOTIVATION

DISCRETE
NATURE

3.5 Occlusion, Depth and Motion Boundary Estimation

1. Initialize each location in the first image with a random correspondence.

2. For each location, check if the correspondences of one of the neighbors are better
than the current correspondence; if so, adopt the neighbor’s correspondence
(propagation step).

3. Search within a small radius of the current correspondence to improve the
solution (refinement step). The search radius decreases over time.

4. Repeat from step 2.

The advantages of the algorithm, compared to plain nearest-neighbor matching, are
a much faster runtime and implicit regularization through propagation. Note that in
principle, the algorithm optimizes the unary matching cost and there is no explicit
binary term for the regularization.

FlowFields [BTS15] uses a similar propagation to PatchMatch. However, the algorithm
starts with seeds or matches from a k-d tree approximate nearest-neighbor search
(see Figure 3.9). The algorithm then uses similar propagation and refinement steps
as PatchMatch but additionally introduces propagation across larger distances by
working with hierarchies (comparable to an image pyramid) and uses outlier filtering
based on forward-backward consistency checks to determine occlusions. The outlier
filtering removes most errors arising from the missing regularization (see Figure 3.9j).

Occlusion, Depth and Motion Boundary Estimation

In this work, depth and motion boundary estimation will mainly be described in the
case of optical flow. Since disparity is a special case, the term “motion boundary”
should be seen interchangeably with “depth boundary” for disparity estimation.
In general, if not specifically mentioned otherwise, optical flow principles are also
applicable to disparity estimation throughout this work.

Apart from the fact that occlusion and motion boundary estimation influence the
flow estimation itself, they are also important quantities on their own. Referring to
the classic work of Black and Jepson [BF0Ob], “motion boundaries may be useful for
navigation, structure from motion, video compression, perceptual organization and
object recognition”. Moreover, occlusions and motion boundaries are a very strong
cue for motion segmentation [ISB18§].

The presence of an occlusion or motion boundary is a discrete phenomenon. Regarding
the energy formulation of Equation 3.2.3, occlusions violate the data term and motion
boundaries violate the smoothness term. Because of their discrete nature, integrating
them into variational frameworks explicitly violates the convex energy assumptions
and makes optimization hard.

Most approaches therefore try to estimate motion boundaries and occlusions in a post-
processing step. The most common approach to find occlusions is to estimate optical
flow in both directions and checking for consistency [ADPS07], as illustrated in Fig-
ure 3.10. Other methods use precomputed optical flow and a broad spectrum of visual

34

Chapter 8 Traditional Approaches

CHICKEN-
AND-EGG
PROBLEM

JOINT
ESTIMATION

35

lus Disocclusion Occlusion Disocclusion

Image 0 Image 1 Image 0 Image 1

(a) Forward and backward flows of a pixel (b) Forward and backward flows of a pixel on

from the foreground object. The point of the static background. In the second image,

the object can be determined as non-occluded the pixel is covered by the foreground object,

because the flows are consistent. hence the backward flow does not match the
forward flow. Therefore, the object can be
determined to be occluded.

Figure 3.10: Flow inconsistency due to occlusion. The red object moves to the
right while the background is static. For the background, forward and backward flows
are not consistent, as illustrated in the figure on the left.

features to train a classifier for occlusions [HAB11| or motion boundaries [LSS12a].
Pérez-Rua et al. [PRCBP16] do not require a dense optical flow field, but motion
candidates which are used to determine if a “plausible reconstruction” exists. Motion
boundary detectors frequently use image boundary detectors [AMFM11, DZ13]| as
input in addition to the optical flow.

However, since occlusion, motion boundary and correspondence estimation are mutu-
ally dependent [HR17, PRCBP16] and the presence of occlusions already negatively
influences the correspondence estimation itself, post-processing is suboptimal and
leads to unreliable estimates. This is usually referred to as a chicken-and-egg prob-
lem [HR17, PRCBP16], and one should rather aim for performing the estimation
jointly.

In discrete methods, such joint estimation can be integrated in different ways. Hur et
al. [HR17| establish a joint formulation by estimating forward and backward flows
simultaneously as well as by integrating the consistency constraint from Figure 3.10
into the energy function, which is then optimized with BCD. In order to make the
optimization feasible, they employ superpixels and a piecewise rigid flow model.
Leordeanu et al. [LZS13| train a classifier based on various features, including the
current motion estimate, and use it repeatedly during energy minimization of the
flow. Notably, this uses occlusion predictions in the optimization but does not
constitute a joint optimization. Reasoning about layers is very beneficial to jointly
determine occlusions, but it is either overly slow [SSB12| (more than 15 hours
per image pair) or also requires precomputed optical flow [SWST13|. (Moreover
according to Statement 2.1.2, it is in general not possible to separate flow fields
into layers.) Layered approaches are also used for joint occlusion and disparity
estimation [BG05, DYLTO07]| as well as the mentioned consistency check in the form
of uniqueness constraints [GLY95, KZ01b|.

3.6

UNCERTAINTY
AND
CONFIDENCE

SPARSI-
FICATION
Prot

3.6 Uncertainty Estimation

1.0
4 — ProbFlow

= Oracle
To0s8
N
©
IS
5 0.6
£
g
wo.4
[}
[=2]
o
$0.2 \
3 g,

o
=)
o

0.2 0.4 0.6 0.8 1.0
Fraction of Removed Pixels

Figure 3.11: Sparsification plot. Sparsification plot of ProbFlow [WKR17| for the
Sintel train clean dataset. The plot shows the average endpoint error (AEPE) for each
fraction of pixels having the highest uncertainties removed. The oracle sparsification
shows the lower bound by removing each fraction of pixels ranked by the ground-truth
error and corresponds to the best possible ranking. Removing 20 percent of the pixels
results in halving the average endpoint error.

Uncertainty Estimation

Providing a measure of reliability along with predictions is a requirement for real-world
applications. Such measures are called uncertainty [PSA10, WKR17| in the case
of error, and confidence [KMG08, BBM09, AHPB13, PTM17, HM12] in the case of
reliability estimation. Both measures give equivalent information and an uncertainty
estimate can be converted into a confidence by inverting its sign. In special cases,
confidence measures are normalized and reflect the probability of a measurement
being correct.

The most general evaluation of uncertainties is performed by so-called sparsification
plots [KMGO08, KN11, HM12, AHPB13, WKR17|. The pixels in an image are first
ordered from highest to lowest uncertainty. The plot is then created by removing a
fraction of the highest-uncertainty pixels and by computing the error of all remaining
pixels. The same can be performed with the ground-truth error (which resembles a
perfect uncertainty), which is usually referred to as the oracle. The quality of the
estimated uncertainty map is then determined by how close its sparsification plot is
to the oracle. An example is illustrated in Figure 3.11. In this work, we later further
simplify the plot by showing the difference between both curves and also introduce an
error measure that reflects the area under the difference curve. This will be explained
in more detail in Section 11.5.2.

In general, only very few optical flow estimation methods provide uncertainty esti-
mates, while more approaches exist for disparity estimation. The approaches can be
differentiated into the categories that will be explained in the following.

36

Chapter 8 Traditional Approaches

3.6.1

For

OPTICAL

FrLow

For

DISPARITY

37

3.6.2

Post-hoc uncertainty estimation

Post-hoc methods are decoupled from the flow and disparity estimation process and
apply post-processing to estimate uncertainties in a separate step. As such, they
ignore information given by the model structure. Very simple methods compute patch
similarities [BBMO09|, use distinctiveness-based measures to evaluate image struc-
ture [MT99] or use left-right [EMWO04| or forward-backward consistency [ADPS07].

All advanced methods usually employ some kind of learning. Kondermann et
al. [KKJGO7| use PCA to learn typical flow fields within a local neighborhood.
They then reconstruct the estimated flow field by using the learned basis to check if
the estimated flow field is a “typical” case. One could also say the algorithm compares
the estimation to templates that have to be defined with the training data. The
reconstruction error serves an uncertainty measure. In their follow-up work [KMGO0§|,
Kondermann et al. extend the approach using hypothesis testing on probabilistic
motion models. Aodha et al. [AHPB13| follow a simpler approach and define an
error threshold on the ground-truth error of estimated flow fields. They then train
a classifier from the images and the estimated flow fields to classify as correct or
incorrect. The predicted classifier’s probability serves as the uncertainty measure.
Note that this approach is problematic in case of strong variations in the magnitude
of the flow.

For disparity, the state of the art in uncertainty estimation is held by convolutional
neural networks [TPBM18|. First outstanding results were achieved by local ap-
proaches, taking patches of the disparity map as input and applying a small network
to estimate the uncertainty of the center pixel [PTM17, SP16|. Recent work has
extended the approach to a fusion of local and global uncertainty estimated with a
full encoder-decoder network [TPBM18]|. In general, the approaches also follow the
classification approach similar to [AHPB13].

Uncertainty Estimation from Model Parameters

Using the final model parameters to infer uncertainty measures was the predominant
approach for disparity before CNNs occurred. While this introduces a coupling to
the model, the estimation is still performed in a separate step and uncertainties are
estimated post-hoc. The simplest confidence measure is the matching cost [EMWO04],
while more advanced approaches compute local or global properties of the cost
curve [Mat92, FVT193, SS98, ZS01, EMW04, BW06, MAW 07, LACO08]. The intu-
ition is to check how “global” the obtained solution is by analyzing the amount, shape
and magnitude of other local minima of the energy function.

In the case of optical flow, Bruhn and Weickert [BWO06| used the inverse of the energy
functional as a measure of the deviation from the model assumptions, while Kybic
and Nieuwenhuis [KN11| performed bootstrap sampling on the data term of an
energy-based method in order to obtain meaningful statistics of the flow prediction.

3.6.3

3.7

(3.7.1)

3.7 Summary

Joint Uncertainty Estimation

Joint estimation of optical flow and disparity requires a fully probabilistic treatment
of the problem. Such a formulation is hard to obtain and only very few methods
exist. For optical flow, the recent work by Wannenwetsch et al. [WKR17| derived a
probabilistic approximation of the posterior of the flow field from the energy functional
and computed flow mean and covariance via Bayesian optimization. In this work, we
also provide a joint flow and uncertainty estimation approach.

Summary

The conclusions that can be drawn from the insights of the traditional methods are:

e Variational methods provide a solid framework and are good for objects that are
larger than their displacement. Otherwise they revert to precomputed descriptor
matches. Occlusions and motion boundaries are not modeled explicitly.

e Discrete optimization is too slow for optical flow directly. Instead, discrete
methods usually operate on (potentially erroneous) superpixels or again require
good precomputed motion candidates. Due to the lower complexity, good
discrete implementations for disparity exist.

e How to obtain the best descriptor matches is an open problem, many different
heuristics have been proposed.

e Features for descriptor matching should be learned from data.

The problem definition of Chapter 2 outlined the general challenges of optical flow.

One can observe that existing methods focus on particular aspects. While some
of them may be more relevant for particular application scenarios, none of the
existing methods are able to provide a general algorithm that addresses all challenges
simultaneously. To the present day, the optical flow problem seems to be too complex
to allow for a general algorithm.

38

4.1

CONNECTIONS

NEURON

(4.1.1)

ACTIVATION
FuncTions

39

Chapter 4

Convolutional Neural Network
Basics

This work presents an approach to disparity and optical flow estimation with Con-
volutional Neural Networks (CNNs). This chapter lays out the basics of CNNs and
draws some relationships to the traditional methods from the last chapters. For a
detailed reference of CNNs, please refer to [GBC16].

Basic Concepts

The concept of a neural network is based on the early idea of feed-forward networks,
where neurons are ordered in layers and connections transport information from one
layer to the next. The network architecture is handcrafted and describes how the
neurons are organized, which connections exist and how signals are computed. In the
training process, the importance of these connections (commonly referred to as their
weight) is learned from a training dataset. The setup of a feed-forward network is
illustrated in Figure 4.1.

The basic building block of a network is a neuron which takes multiple input con-
nections and combines the information to a single output signal (Figure 4.1b). Let
x1; denote the output of neuron ¢ in layer [. The output of the neuron j in the next
layer [4+ 1 is then computed as:

Tjlq1 = f((> wkaki) + bj)v

kEC]‘

where C; denotes the input connections for neuron j. The activation function f is
most important and distinguishes a neural network from a linear mapping.

In the beginning, inspired by neuroscience, tanh and the sigmoid functions were
used, as depicted in Figures 4.2a and 4.2b. The problem with these nonlinearities
is that they suffer from vanishing gradients. Krizevskij et al. [KSH12| introduced
a much simpler variant that led to the breakthrough: the Rectified Linear Unit

CONVOLU-
TIONAL
NETWORKS

Input
Layer

Layer

| Output :
Layer

4.1 Basic Concepts

S

(b) Detailed view of a neuron. Incoming
information is summed up, a bias is added
and finally, the activation function is applied.

(a) A basic feed-forward network: data is
flowing from left to right (sometimes also re-
ferred to as bottom to top), and neighboring
layers are fully connected.

Figure 4.1: Neural network.

1.04

o
Vanishing

Gradient

0.64

0.44

Vanishing

0.24
Gradient

0.04

(a) The sigmoid activation
function. For large negative
and positive values, the gra-
dient vanishes.

o

Vanishing
Gradient

)4

Vanishing
- | Gradient
51

—

(b) The tanh activation func-
tion. For large negative and
positive values, the gradient
vanishes. For initialization,

04

(¢) The ReLU activation
function. In the leaky vari-
ant, a small slope is present
in the negative domain.

the advantage over the sig-
moid is that at 0, the func-
tion takes the value 0.

Figure 4.2: Activation functions.

(ReLU) shown in Figure 4.2c. In the positive domain, it is linear and does not
suffer from the vanishing gradients. Because of the partial linearity, ReL.Us preserve
many of the properties that make linear models easy to optimize with gradient-based
methods [GBC16|. In the negative domain, the ReLU is also linear, but gradients
become 0, which can lead to “dead” neurons. However, it is likely that at least for
some training sample the value will lie in the positive domain and cause normal
gradients, which will eventually balance the use of the neuron. In order to support
this further, the leaky ReLU was introduced [MHN13| (Figure 4.2¢), which is also
used in this work. It creates small gradients even in the negative domain.

Applying a fully connected network as in Figure 4.1a to an image would lead to
learning different filter masks for each image location and would result in an excessive
amount of redundant weights. For an image, spatially invariant features are actually
of importance. This leads to the concept of making C; from Equation 4.1.1 a function

40

Chapter 4 Convolutional Neural Network Basics

4.2

Loss
FuNcTIiON

NonN-
CONVEXITY

41

Layer n Layer n+1

Layer n+1
Kernel e + Layer n

Kernel

(a) The convolution presents a kernel with (b) The upconvolution performs the opposite
a set of weights that is applied to a grid of operation: for a location of the low-resolution
image locations. The grid can be dense or feature map, several different weights are ap-
with a stride, as illustrated by the red points. plied and the values are added to the high-
resolution feature map (indicated by “+”).

Figure 4.3: Convolution variants.

of z,y, effectively “convolving” a learnable filter mask with the input. This is referred
to as a Convolutional Neural Network (CNN) [LB98|] and is depicted in Figure 4.3a.
The convolution may optionally be equipped with a stride s that leads to a reduction
in spatial dimension (which is equivalent to downsampling the output feature map).
The same principle may also be applied in the other direction by taking a single input
and adding it to several output locations, which leads to a higher resolution feature
map and is referred to as upconvolution [LSD15, DSB15] (see Figure 4.3b). FlowNet
was one of the first works using upconvolutions and applying them on feature maps
with additional features from the encoder (see Section 6.1.3).

Training and Convergence

In order to train a neural network, a loss function L is applied at the end. This
allows for computing gradients to each weight (%1 respectively by using the chain
rule for each weight w; in the network. Traditionally, machine-learning has avoided
the difficulty of general optimization by carefully designing the objective function

and constraints to ensure that the optimization problem is convex |[GBC16].

Neural networks have a very large number of parameters and are nonconvex. On the
other hand, neural networks can approximate almost any function [Cyb89, Hor91|. It
took a long time for the research community to accept that such nonconvex models
can be very useful in practice. Due to the memory requirements and computation
complexity, simple first-order methods based on gradient descent are used for opti-
mization, such as Stochastic Gradient Descent (SGD) [GBC16]. To achieve a good

LocaL
MINIMA

ADAM

4.2 Training and Convergence

> >
> >

(a) In a one-dimensional space, a local (b) In a higher-dimensional space, a

minimum is unavoidable. local minimum in one dimension can
be circumvented through the addi-
tional dimension.

Figure 4.4: Local minima in high-dimensional spaces. The figure shows the
same function in both 1D and 2D space. In this example, the 2D space allows for
circumventing the local minimum.

generalization, some weight regularization is added to the loss function L. For a local

minimum, the necessary condition is that the gradient becomes 0 in all dimensions.

An important insight is that this becomes increasingly unlikely the more dimensions
exist [CHM'15] (e.g., the presented FlowNet from this work has ~40M weights). The
intuition behind this is illustrated in Figure 4.4. In this particular example, the local
minimum can be circumvented by the additional dimension. In general, the more
dimensions there are, the less likely it becomes to reach a point where the gradient is
0 in all dimensions.

Choromanska et al. [CHM™ 15| conjecture that simulated annealing and SGD converge
to a band of low critical points, and that all critical points found there are local
minima of a high quality, when measured by the test error. They state that in small
networks, the probability of reaching a poor local minimum is actually higher and
that it is beneficial to increase the network size. They also conjecture that recovering
the global minimum becomes harder as the network size increases, but that this is
irrelevant in practice because the global minimum is often not desired because of
overfitting.

Normal gradient descent can lead to strong oscillations. For this reason, the solver is
usually extended with a momentum. A further improvement in dealing with plateaus
(vanishing gradients) and cliffs (exploding gradients) is to normalize the learning
rate. Momentum and learning-rate normalization have led to the popular ADAM
solver [KB15|, which is also used successfully in this work.

Despite their nonconvexity and the absence of convergence guarantees, CNNs have
proven to be among the most powerful methods in almost every computer vision

discipline [KSH12, SYLK18, UZU*17, ISB18, EPF14, RDGF16, DLHT16, RFB15].

42

Chapter 4 Convolutional Neural Network Basics

DESCRIPTOR
MODELING

43

4.3 Feature Hierarchies

(4.3.1)

In all machine-learning tasks, the most significant factor is the input representation.
The breakthrough of deep learning was the ability to learn a hierarchy of such features,
which is expressed by the word “deep”. It solves this central problem in representation
learning by introducing representations that are expressed in terms of other, simpler
representations, enabling the computer to build complex concepts out of simpler
ones |[GBC16|. An example of such a feature hierarchy is shown in Figure 4.5. It
shows a person being represented by simpler concepts, such as corners and contours,
which are ultimately defined in terms of edges.

Statement 2.1.8 explained that because of the aperture problem, pixel compounds need
to be considered and the required size of such a compound is unknown. Section 3.1
mentioned that descriptors learned with CNNs outperform all engineered methods.
CNNs with a stack of several layers from Equation 4.1.1 can actually implement HOG
descriptors (derivatives, direction projection, binning and accumulation can all be
expressed by appropriately configured convolutions) and can also learn biologically
motivated filters, such as Gabor filters [LNSC14|. Thus, traditional descriptors are
a special case of what CNNs can implement, and CNNs can possibly converge to a
combination of those or even to an unknown superior solution.

Beyond features, the remaining question is if CNNs can also learn the best heuristics
for correspondence and regularization algorithms. This is the central part of this
work and will be presented in the following chapters.

4.8 Feature Hierarchies

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Figure 4.5: Feature hierarchy learned by a CINN. The figure shows the different
levels of abstraction learned by a deep network. The bottom layers take pixels as
input. First-level features then extract lines and edges. Further layers aggregate
features to contours and parts. The final layers allow for deciding upon the whole
object’s class. Source: [GBC16].

44

MODALITIES

Chapter 5

Training Data

Training data was published in the works [DFIT 15], [MIH" 16] and [IMSt17]. Gen-
erating the data was the contribution of other authors. The author of this thesis
contributed to selecting the correct priors and proposed the priors for the ChairsSD-
Hom dataset.

Section 2.4.3 has already explained that optical flow is a secondary feature and cannot
be directly captured by a sensor. Obtaining large amounts of accurate training data
for optical flow is therefore far from easy. For this reason, we revert to generating
such data synthetically. In general, we generate the following modalities for each
dataset:

e images,
e forward and backward optical flow,
e forward and backward occlusions and

e forward and backward motion boundaries.

For the scene flow data, we generate the above for the left and the right camera and
additionally provide:

e left-right and right-left disparities,

o left-right and right-left disparity occlusions,
o left-right and right-left disparity changes and
e left and right depth boundaries.

Genera- We also provide the scene flow data across more than two frames. The datasets

LIZATION

45

presented in the following will be rendered from 2D and 3D models but are in general
far away from realistic scenarios. For a detailed ablation study of dataset aspects
please refer to [MIFT18]. Interestingly, the rest of this work will show that the task

5.1

OBJECTS

5.1 FlyingChairs

e f

Figure 5.1: Two examples from the FlyingChairs dataset. We generate sim-
plistic training data by placing chairs on front of a background and by applying
randomly sampled affine transformations. Each row shows the two images and the
visualized flow field.

of correspondence estimation can be learned and generalizes very well from such
unrealistic data. The nature of correspondence estimation is in general very different
from classification: correspondence estimation requires finding similar objects in both
images. Notably, this does not require knowing about all possible object types, but
only about the general appearance of a possible object.

FlyingChairs

Existing datasets, such as Sintel [BWSB12| and KITTI [GLU12, MG15|, cannot
supply the required large amount of data necessary to train a CNN for optical flow.
In order to create this amount of data, we take a very simple approach and generate
a dataset that we name FlyingChairs. This dataset is generated from 2D images
exclusively and only valid for two-frame optical flow.

As backgrounds, we use 964 images with a resolution of 1,024 x 768 pixels that were
downloaded from Flickr. As foreground objects, we use 809 chair models from the
dataset of Aubry et al. [AME™'14], each rendered from 62 views: 31 azimuth angles
and 2 elevation angles. In order to generate the first image in an image pair, we take
a background image and randomly position a random set of chairs on top. Examples
are shown in Figure 5.1. The number of the chairs is sampled uniformly from 16 to
24, the types and viewpoints of the chairs are sampled uniformly and the locations of
the chairs are sampled uniformly from the whole image. The sizes of the chairs (in
pixels) are sampled from a Gaussian with mean 200 and standard deviation 200, and
then clamped between 50 and 640.

46

Chapter 5 Training Data

TRANSFOR-
MATIONS

(5.1.1)

5.2

47

100 g

10° J

Fraction of displacement bin

Displacement magnitude (zoom into orange

Figure 5.2: Displacement magnitude histograms. Left: histogram of displace-
ment magnitudes of different datasets. The y-axis is logarithmic. Right: zoomed view
for very small displacements. The FlyingChairs dataset very closely follows the Sintel
dataset, while the ChairsSDHom dataset is close to UCF101. FlyingThings3D has few
small displacements and for larger displacements also follows Sintel and FlyingChairs.
The FlyingThings3D histogram appears smoother because it contains more raw pixel
data as well as due to its randomization of 6-DOF camera motion. The spike in
UCF101 comes from clipping x- and y-ranges to 20px respectively for storage (note
that this still allows non-axis-aligned flows to have magnitudes larger than 20px).

To generate the second image in a pair and the flow field, we apply random trans-
formations to the chairs and the background. Each of these transformations is a
composition of zooming, rotation and translation. The parameters to be sampled are
the zoom coefficient, the rotation angle and the translation vector. We aim at roughly
matching the displacement distribution of Sintel, as shown in Fig. 5.2. For details of
the parameter distributions, please refer to the supplemental material of [DFIT15].

Given the transformation parameters, it is straightforward to generate the second
image in the pair as well as the flow field and the occlusion map; the same can also
be done in the backward direction. We finally cut each image into four quarters,
resulting in four image pairs of 512 x 384 pixels each. We use this procedure to
generate 22,872 image pairs in total. Note that this size is chosen arbitrarily and
could be larger in principle. In summary:

FlyingChairs is a simplistic dataset generated only from 2D data and only with 2D
transformations.

ChairsSDHom

As one example of a real-world dataset, we examine the action recognition dataset
UCF101 [SZS13]. We compute optical flow by using LDOF [BM11| and compare
the flow magnitude distribution to other datasets, as shown in Figure 5.2. While
FlyingChairs is similar to Sintel, UCF101 is fundamentally different and contains
significantly more small displacements.

10 : : P 115 T T Trr, G S O e 1072 pi g
= ChairsSDHom FlyingChairs E : k|
10~% | = UCF101 = Sintel = feereecriereiecs et n YN F
= FlyingThings3D : : : : r :
1076 1 1 1 1 1073 1
0 5 10 15 20 25 0 0.25 0.5

box)

Howmo-
GENEOUS
Back-
GROUNDS

5.3

3D
MODELING

OBJECTS

5.8 FlyingThings3D

12}

&

Figure 5.3: Example images from the ChairsSDHom dataset. Motivated by
UCF101 [SZS13], we create a small displacement version of FlyingChairs and add
homogeneous backgrounds.

In addition, the recorded scenes of UCF101 often contain a homogeneous background.
We thus add scenes with weakly textured backgrounds that are monochrome or
contain very subtle color gradients (see Figure 5.3). Such monotonous backgrounds
are not unusual in natural videos, but never appear in FlyingChairs. As described in
Section 2.1.4, homogeneous areas do not allow for correspondence estimation, and in
principle any motion is possible. The most plausible prior is that such regions do not
move. Hence, in order to introduce a meaningful prior, we keep the homogeneous
background images fixed.

With some minor differences in the technical implementation, the dataset itself is gen-
erated in the same manner as FlyingChairs but with much smaller displacements. We
name the dataset ChairsSDHom (SD = Small Displacements, Hom = Homogeneous
backgrounds).

FlyingThings3D

FlyingChairs and ChairsSDHom only apply 2D affine transformations to objects. As
explained in Section 2.1.2 and Figure 2.4, general 3D motion of objects cannot be
described by affine transformations. Furthermore, scene flow can also only be inferred
if the underlying data is truly 3D.

In order to overcome these limitations, the FlyingThings3D dataset was created which
contains the complete ground-truth scene flow in forward and backward direction. We
use the open-source 3D creation suite Blender to animate a large number of objects
with complex motions. The resulting information is complete even in occluded regions
since the render engine always has full knowledge about all scene points.

The base of each scene is a large textured ground plane. We generated 200 static
background objects with shapes that were randomly chosen from cuboids and cylinders.
Each object was randomly scaled, rotated, textured and then placed on the ground
plane. In order to populate the scene, we downloaded 35,927 detailed 3D models
from Stanford’s ShapeNet [SCH15|! database. From these, we assembled a training
set of 32,872 and a test set of 3,055 models. Furthermore, the model categories were
split disjointly among the training and the test set.

! http://shapenet.cs.stanford.edu/

48

http://shapenet.cs.stanford.edu/

Chapter 5 Training Data

Transror- We sampled between five and twenty random objects from this object collection and

MATIONS

RENDERING

49

randomly textured every material of every object. Each ShapeNet object is translated
and rotated along a smooth 3D trajectory among multiple frames. The camera
itself is also animated. The texture collection is a combination of procedural images
created with ImageMagick?, landscape and cityscape photographs from Flickr®, and
texture-style photographs from Image*After®. Like the 3D models also the textures
were split into disjoint training and test sets.

Given the intrinsic camera parameters (focal length, principal point) and the render
settings (image size, virtual sensor size and format), we project the 3D motion vector
of each pixel into a 2D pixel motion vector in the image plane. Depth is directly
retrieved from a pixel’s 3D position and converted to disparity by using the known
configuration of the virtual stereo rig. We compute the disparity change from the
depth component of the 3D motion vector. Examples are shown in Fig. 5.4.

Like the Sintel dataset, this dataset also includes two distinct versions of every image:
the clean pass shows colors, textures and scene lighting but no image degradations,
while the final pass additionally includes postprocessing effects such as simulated
depth-of-field blur, motion blur, sunlight glare and gamma-curve manipulation.

2http://www.imagemagick.org/script/index.php

Shttps://www.flickr.com/ Noncommercial public license. We used the code framework by
Hays and Efros [HEO0S]

4http://www.imageafter.com/textures.php

http://www.imagemagick.org/script/index.php
https://www.flickr.com/
http://www.imageafter.com/textures.php

5.8 FlyingThings3D

Image

! Image Disparity

,\Inmgv
- B

Figure 5.4: Examples from the FlyingThings3D dataset. The figure shows left
images, left-right disparity, left flow and left-right disparity change (corresponding to
motion in camera direction).

50

END-TO-END

o1

CNNs

Chapter 6

FlowNet

FlowNet, published in [DFIT 15], was a joint work together with Alezey Dosovitskiy
and Philipp Fischer. The author of this thesis contributed with his expertise in optical
flow, to the concept of FlowNetC and the design of the correlation layer. The first work
did not train the networks equally. The author showed that FlowNetC outperforms
FlowNetS and proposed the dataset schedules which boosted boosted the performance
(published in [IMST17]). Ablation studies from this chapter are also the author’s
contributions. In [DFIT15], the author furthermore contributed the variational refine-
ment.

Past work has already shown that CNNs are good at computing discriminative features
for matching. A key contribution of this work is showing that CNNs are capable
of solving the whole matching and regularization task end-to-end, as illustrated in
Figure 6.1:

convolutional

network

Figure 6.1: FlowNet. A key contribution of this thesis are neural networks that solve
the complete optical flow task end-to-end, including feature extraction, matching
and regularization. The information is first spatially compressed to a more abstract
representation in a contractive part and then refined back to full resolution in an
expanding part.

6.1 Network Architectures

Interleaved Mixed

Separate

Inter-

connections
——>

—>

E— —
Image 0 Image 1

Stacked Images Stacked Images

Figure 6.2: Siamese networks and stacked images. The left side shows a Siamese
architecture with two separate networks on two images. Interconnections need to be
added in order to be able to determine correspondences. It is possible to integrate
both networks into a single interleaved identical one (shown in the middle). This
furthermore allows for closely entangling the two networks and for making arbitrary
connections between them (shown on the right), leading to a single encoder that
takes the stacked images as input.

Featrure We follow the concept of learning feature hierarchies and going to a more abstract
HIERARCHIES representation. As an example, consider a moving person. The lowest-level features
are lines and edges which can then be aggregated in a hierarchy. E.g., composition of
lines and edges can lead to a finger, this in turn can lead to a hand, an arm and the
whole person. This is similar to the concept of feature hierarchies for classification

described in Section 4.3.

Traditional methods use downsampling to obtain more abstract representations. In
order to be able to consider the whole person as an entity, a coarse resolution is
required. Unfortunately, the coarse resolution results in a loss of information. CNNs
allow for obtaining more abstract representations by reducing the spatial dimension
while increasing the feature dimension, which allows for retaining information about
the object. Such a feature hierarchy enables to construct the required pixel compounds
described in Section 2.1.2 with different granularities. To this end, we propose two
encoder-decoder network architectures that will now be described in more detail. The
first one is very generic while the second one is more tailored to the correspondence
estimation task.

6.1 Network Architectures

6.1.1 FlowNetS Encoder

The required compound sizes and the level of abstraction depend on the data it-
self. This means that when building a hierarchy, the level at which to check for
correspondences is unknown.

52

Chapter 6 FlowNet

INTERLEAVED

ENCODER

FLowNETS

6.1.2

FLowNEeTC

CORRELATION

53

(6.1.1)

FlowNetSimple

Figure 6.3: FlowNetS architecture. The figure shows the FlowNetS encoder
architecture, which consists of nine convolutional layers. Six of them have stride of
2. This results in a reduction of the spatial dimension by 6—14. At the same time, the
feature dimension is increased to 1,024. Filter sizes are 7 x 7, 5 x 5 and 3 x 3 for all
subsequent convolutions. The decoder is indicated by a green funnel (shown in detail
in Figure 6.5).

The straightforward approach is to construct a Siamese network and to introduce
interconnections at all possible levels in order to account for the unknown level at
which to match. However, such a Siamese network can also be represented as a single
interleaved network. Introducing arbitrary connections then leads to a single encoder
that takes the stacked images as input. This is illustrated in Figure 6.2 (see previous
page). Such an encoder still has the ability to contain two disjoint Siamese parts
while it can also learn to arbitrarily entangle them.

We use such an approach for the first variant of our network, which we call FlowNet-
Simple (FlowNetS). Where and how exactly the matching and regularization happens
in this case is left entirely to the learning process. The architecture of the resulting
encoder is shown in Figure 6.3.

FlowNetC Encoder

In the second variant, we closely follow the traditional approaches by designing a
network that performs the feature extraction, matching and regularization steps
explicitly. This is shown in Figure 6.4.

In the first step, three levels of convolutions are applied in order to extract features on
both images in a Siamese fashion. For the matching, we introduce a special correlation
layer which performs multiplicative comparisons between two feature maps. Due to
the special layer, we name this network architecture FlowNetCorr (FlowNetC').

Given two multi-channel feature maps fi, fo : R? — R¥ (with w, h, and k being their
width, height and number of channels), our correlation layer lets the network compare
each feature vector from f; with each feature vector from f5. The correlation of two
feature vectors at locations x; and x» is then defined as:

c(x1,x2) = (fi(x1), f2(x2))

Note that Equation 6.1.1 is identical to a 1 x 1 convolution in neural networks, but
instead of convolving data with a filter, it does so with other data. For this reason, it
allows for normal backpropagation but has no trainable weights. Comparing all patch

REGULAR-
IZATION

6.1.3

6.1 Network Architectures

FlowNetCorr

Figure 6.4: FlowNetC architecture. The FlowNetC architecture starts with a
Siamese part that extracts features on both images. The features are then passed

to a custom correlation layer that computes correlations within local neighborhoods.

The correlation result is then passed through an encoder-decoder architecture for
regularization. The decoder is indicated by a green funnel (shown is in detail in
Figure 6.5).

combinations involves w? - h% such computations, yields a large result and makes
efficient forward and backward passes intractable. Thus, for computational reasons,
we limit the maximum displacement for comparisons to a local neighborhood and
also introduce striding in both feature maps.

Given a maximum displacement 7, we construct displacement vectors d € [—n, +n] x
[—n, +n] and compute ¢(x1,x1 +d) for a given x; for each possible d. We use strides
51 to quantize x; globally and s; to quantize d within the neighborhood centered
around x7. For each feature location xi, this comes to a two-dimensional result
according to the possible values of d. In order to avoid a four-dimensional space, we
organize the relative displacements in channels in practice, i.e. we reshape the result
to a one-dimensional vector representing the output feature vector of the operation.

The last step is then to perform regularization on the correlation result. In order to
achieve this, we add an encoder-decoder network on top (see Figures 6.4 and 6.5). In
the encoder, we use six more convolutions to obtain the same final feature map as
for FlowNetS. Notably, in this architecture, we define where and how the matching
happens and what the largest feature compound size is (as the receptive field before
the convolution). This introduces engineered priors and does not preserve the ability
of a general network to learn the optimal feature hierarchies. However, the task of
matching larger compounds as a whole can still be accomplished by the regularization
after the correlation.

Decoder

In order to bring the abstract representation back to full resolution, we use the
decoder depicted in Figure 6.5 (see next page). For increasing the resolution we
use upconvolutions as described in Section 4.1. Each step increases the resolution
by a factor of 2. We repeat this four times, resulting in a predicted flow for which
the resolution is still four times smaller than the input. Using this resolution and

54

Chapter 6

Skip CON-

NECTIONS

55

6.2

6.2.1

FlowNet

_ o i -
I -

*: upconvolved

Figure 6.5: Decoder architecture. The decoder uses upconvolutions to upsample
previous feature maps. Flow fields are predicted at each resolution (deep supervision),
upsampled and concatenated to the features together with those from the encoder.
These steps are repeated so as to obtain a high-resolution flow field.

performing a final bilinear upsampling step results in best speed/accuracy trade-off.
Optionally, one may also add two more upconvolutions to obtain the full resolution
in more detail. We also make use of the concept of deep supervision to predict a
downsampled flow field at each resolution.

Notably, we introduce skip connections from each part of the encoder by concatenating
with its features. This way, we preserve both the high-level information passed from
coarser feature maps and fine local information provided in lower-layer feature maps.
The decoder can use this information to accurately spread estimated motion to object
boundaries. Furthermore, information at a certain level can also pass directly from
the encoder to the decoder by a skip connection (e.g. a small object).

Analysis

Training Details

In order to train the networks, we use the FlyingChairs and FlyingThings3D datasets
(Chapter 5) and apply the endpoint error as a loss function (Equation 2.4.1). We fix
the momentum parameters as recommended in [KB15| to 51 = 0.9 and 2 = 0.999.
For regularization, we add an L2 loss on the weights of the network with a coefficient
of 0.0004. Since in a certain way, every pixel is a training sample, we use fairly
small mini-batches of eight image pairs for FlyingChairs and four image pairs for
FlyingThings3D. Note that the resolution of FlyingThings3D is higher and the smaller
batch size results in approximately the same amount of pixels.

We start with a learning rate of A = le—4 and then divide it by 2 every 100k iterations
after the first 300k. In total, this amounts to 600k iterations. We name this schedule
Sshort- Further learning rate schedules will be presented in Section 6.2.8. The results
of training the networks with different solver configurations are shown in Table 6.1.

(6.2.1)

6.2.2

GEOMETRIC
AUGMENTA-
TION

CoLOR AUG-
MENTATION

(6.2.2)

6.2 Analysis

Solver FlowNetS | FlowNetC
SGD [GBC16| 7.76 8.85
SGD+momentum |[GBC16] 7.36 7.73
ADAM [KB15] 6.80 7.00

Table 6.1: Solver results. The table shows results on Sintel train clean after training
FlowNetS and FlowNetC for 600k iterations with different solver configurations. In
comparison, LDOF [BM11]| achieves an EPE of 4.29 on the same dataset. The results
show that our proposed CNNs are initially capable of estimating optical flow and the
ADAM solver performs best.

The first observation from Table 6.1 is that optical flow estimation is possible with
the proposed CNNs. The best results are achieved with the ADAM solver.

Interestingly, both network variants can be trained with plain SGD. Adding momen-
tum improves the results. Further normalizing the learning rate with the ADAM
solver performs best in both cases and will be used in subsequent experiments. For
complete details of the network architecture and solver configuration, the reader
is referred to |[DFIT15]. Further improvements to the training procedure will be
presented in the following.

Augmentation

A widely used strategy to improve generalization of neural networks is data aug-
mentation [KSH12, EPF14|. Even though the presented datasets are fairly large, we
find that using augmentations significantly increases the performance and prevents
overfitting. We include two types of augmentation:

As geometric augmentation, we apply translation, rotation and scaling with differ-
ent coefficients in x- and y-direction. Because we want to increase the variety not only
of images but also of flow fields, we apply the same strong geometric transformation
to both images of a pair but additionally a smaller relative transformation between
the two images. We adapt the flow field accordingly by applying the per-image
augmentations to it as well.

As color augmentation, we apply changes in brightness, contrast, gamma and color,
and we add Gaussian noise.

For complete details of the augmentation parameters, the reader is referred to [DFI*15].

We show some examples of the applied augmentations in Figure 6.6 (see next page)
and provide an ablation study in Table 6.2 (see next page). We observe that:

Color augmentation does not help for FlowNetS, but improves FlowNetC results by
approx. 17%. Notably, geometric augmentation decreases the error by approx. 33% in
both cases in comparison to using no augmentation. Combining both augmentations
gives the best results, thus we use this configuration for subsequent experiments.
In total, the effect of augmentation is strongest for FlowNetC, reducing the error
by approx. 46%. Note that the result for FlowNetC with augmentation (3.77) now
outperforms the traditional method LDOF [BM11] (4.29) by 0.52.

56

Chapter 6 FlowNet

57

6.2.3

(6.2.3)

6.2.4

Iy < \uw - k |

randomized online augmentation.

Augmentation Type || FlowNetS | FlowNetC
None 6.80 7.00
Color 6.91 5.81
Geometric 4.57 3.88
Geometric+Color 4.45 3.77

> o d

v v

Figure 6.6: Data augmentation examples. The top row shows image pairs and
flow visualizations of the original data. The bottom row shows the data after the

~
By

Table 6.2: Augmentation results. The table shows results on Sintel train clean
after training FlowNetS and FlowNetC for 600k iterations with different augmentation
configurations. Adding both types of augmentation yields the best results.

Losses FlowNetS | FlowNetC
Level 2 4.67 3.95
Levels 6,5,4,3,2 4.45 3.77

Table 6.3: Deep supervision results. The table shows results on Sintel train clean
for networks trained with and without deep supervision. The deep supervision is not
required but increases performance slightly.

Deep supervision
Next, we perform an ablation study of the deep supervision losses:

The results from Table 6.3 show that the networks can also well be trained with only
a final loss in the end, with deep supervision not being mandatory. Adding deep
supervision improves results slightly.

Skip Connections and Bottleneck

The skip connections are an essential part of the network architecture. In principle,
any middle block between the same encoder and decoder levels can be bypassed
through a skip connection. This can also be seen as creating an ensemble within a

(6.2.4)

NoIsE

DETAILS

6.2 Analysis

Skip connections || FlowNetS | FlowNetC
No 4.70 3.87
Yes, no backprop. 4.89 3.86
Yes 4.45 3.77

Table 6.4: Results for using skip connections. The table shows results on Sintel
train clean for different configurations of skip connections. Adding skip connections
with backpropagation gives the best results.

-—

(a) Skip connections (b) No skip connections (¢) Ground truth

Figure 6.7: Effect of skip connections. The figure shows results of a FlowNetS

trained with and without skip connections by using the Middlebury visualization.

Training networks without skip connections is still possible but leads to blurring (A
and B) and missing or incorrectly estimated details (C and D).

single network. In FlowNetS and FlowNetC, the skip connections can be used to

transport image features and finer-grained correspondence information to the decoder.

The image features are needed in order to spatially propagate coarse flows from the
bottleneck correctly to object boundaries. Note that in the coarse representation
of the bottleneck, features allow for encoding multiple flows per location. This
information needs to be spread out when going to finer resolutions until eventually
selecting a single flow per pixel.

The experiments from Table 6.4 show that it is also possible to train networks without
skip connections and that results are only slightly worse.

Note that in this case, all image information has to pass through the bottleneck.

As the bottleneck’s capacity is limited, one would expect blurred edges and missing
details. These effects are visible in Figure 6.7.

However, when adding the skip connections, one can generally observe that predictions
become more noisy (see Figure 6.7a). Assumingly, this comes from the network
trying to estimate optical flow from image features instead of from correspondence
information. Disabling the gradients through the skip connections does not mitigate

the effect (see Table 6.4). Reducing the noise will be further discussed in Section 6.2.5.

In order to further investigate the information flowing through the network, we perform
experiments trying to reconstruct the image from the bottleneck. Figure 6.8 (see next
page) shows that quite detailed image information is generally present. As expected,
the information about the first image is generally sharper than for the second image
(this arises from the fact that edges of the flow field correspond to edges of the first
image), and using an initial network without skip connections leads to more details

58

Chapter 6 FlowNet

59

6.2.5

(6.2.5)

Reconstructed H Reconstructed

A*"Im%()

F'low Flow

Figure 6.8: Image reconstruction from bottleneck. The experiments are based
on taking a trained FlowNetS with skip connections (left) or without skip connections
(right) and training a new decoder (orange) while leaving the initial part of the
network fixed (green). In general, one can observe that some image features are
present in the bottleneck (top) but do not contain color information. As expected,
using an initial network without skip connections (right) propagates finer details
through the bottleneck.

being propagated through the bottleneck. Note that although the bottleneck has
a very coarse resolution (éth of the original), it in general still contains somewhat
detailed information (top left of Figure 6.8).

Value Normalization

For training CNNs, it is common to normalize input and output data to a common
range of [—1,1] [KSH12, SZ14b]. This improves convergence and numerical stability.
In the FlowNet case, normalizing the optical flow ground truth means to divide the
values by approximately 20.

We find that using value normalization does not influence the EPE significantly but
produces much more noise than without normalization, as illustrated in Figure 6.9.

Since there are no different types of output that require to be normalized to a
common range and the numerical modification by a factor of 20 is not too large, the
optimization should in principle not be affected by scaling the output values.

However, FlowNet actually reinserts the predicted values into the network during the
coarse-to-fine refinement in the decoder. The previously predicted optical flow field
is upsampled and concatenated with the upsampled features as well as the encoder
skip connections features (see Figure 6.5). The next convolution operates on this
mixture of data. Scaling the flow values up leads to respectively smaller weights in
the next convolution. We conjecture that due to weight decay, the smaller weight
values allow the next convolution to put the focus on the upsampled flow values
more easily and leads to a clean coarse-to-fine refinement instead of trying to infer

6.2.6

6.2 Analysis

| A

(a) Values scaled by o5 (b) Unscaled values (¢) Ground truth

Figure 6.9: Effect of ground truth normalization. The figure shows two different
networks by using the Middlebury visualization. The one on the left is trained with
ground-truth values scaled by % while the other one is trained without scaling.
Notably, the downscaling introduces noise, and removing it leads to much better
predictions.

Figure 6.10: Visualization of first-layer filters of FlowNetC. The filters have
only little structure while the network can use them very well to estimate optical
flow.

flow values from the skip connections. The latter can hardly give flow estimations
(only for displacements inside the receptive field), and trying to infer flow from image
features naturally leads to noise produced by the optimization.

Learned Features

The first layers of CNNs operate directly on images, hence it is possible to visualize
their filter masks as color patches. The visualization of the first-layer filtermasks
for FlowNetC are shown in Figure 6.10. While other works have reported Gabor-
like filters [ZF14], it is interesting to see that FlowNetC uses filters with very little
structure. For FlowNetS, the case is similar, and training the networks longer leads
to a similar solution, too. This indicates that the network converges to a solution
different from what humans would engineer.

In contrast, the filters that are applied to the output of the correlation layer have
a very visible structure, as shown in Fig. 6.11 (see next page). Different filters are
selective for different flow directions and magnitudes, resembling different motion
patterns.

60

Chapter 6 FlowNet

61

6.2.7

(6.2.6)

6.2.8

Figure 6.11: Visualization of features after correlation. Visualization of filters
applied on top of the correlation layer in FlowNetC. There are 256 filters, and for
each of them, we show the weights shaped as a 21 x 21 pixels patch, where each pixel
corresponds to a displacement vector. The center pixel of each patch corresponds to
zero displacement. The filters favor interesting displacement patterns.

Network size

We experiment with the network size by taking only a fraction of the number of
channels for every layer in the network. Figure 6.12 shows the network accuracy and
runtime for different network sizes. One can observe that even very small networks
are still able to estimate good optical flow while being much faster.

In order to obtain small and fast variants, we use a fraction of 3/8 of the original
number of channels as a good trade-off between speed and accuracy.

Datasets and schedules

Well-selected training data is crucial for the success of supervised training. The past
sections have shown that it is possible to train a network on FlyingChairs and to
obtain a performance on Sintel surpassing LDOF [BM11].

6.2 Analysis

6.25 35

600 5.50 50

6. k30 o
= g = 5.25 g
< 5.75 1 & < =
: S oy
£ 5.50 1 ~ z ~
£ ® = 475 E
< R
a7 & 2 4.50 30 5
g 5.00 1 15 2 g <
S 500 B o425 g
=i £ & Loy £
=475 Lo = 400 0.2

1.50 1 3.75

[5 F 10
0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 14
Number of Channels Multiplier Number of Channels Multiplier
(a) FlowNetS (b) FlowNetC

Figure 6.12: Performance over network size. The figures show accuracy and
runtime depending on the network width. The multiplier 1 corresponds to the width
of the original FlowNet architecture. Wider networks do not improve the accuracy
significantly. For fast execution times, a factor of % is a good choice. Timings are
taken from an Nvidia GTX 1080.

It is interesting to see by itself that a CNN can estimate optical flow and learns to do
so by using the very simplistic chairs dataset. This shows that the concept of corre-
spondence can be learned independently of the actual objects as long as the general
dataset statistics are similar to the test data (these include real-world backgrounds
and object sizes). The question seems reasonable if a more sophisticated dataset can
further improve the performance. For this reason, we introduced FlyingThings3D in
Section 5.3. This dataset contains a larger variety of objects, is rendered from true
3D motion and contains realistic lighting effects.

We perform experiments on the different datasets with different training schedules and
fine-tuning. To this extent, we introduce a schedule Sj,,, that is a lengthened version
of the original schedule Ss,,+ and a schedule Sgy, for fine-tuning. The schedules are
illustrated in Figure 6.13 (see next page). In later chapters, we also use schedules
shortened by a constant factor. We denote this by a division, e.g., Sgpor¢ shortened
by a factor of 2 is denoted Ssport/2.

Results of training networks on the different datasets and with the different schedules
are shown in Table 6.5 (see next page). The first observation is that using longer
schedules improves the results. Extending the schedule even further on the same
dataset does not lead to significant improvements any more, indicating that networks
trained with Sj,,, are converged quite well. Surprisingly, results are worse when
the networks are trained on FlyingThings3D rather than on FlyingChairs, despite
FlyingThings3D being more sophisticated and having similar statistics.

62

Chapter 6 FlowNet

x10~%
T T T T T T T T T T T T T T 1 1 1
10 — Sshort-
079, b Slong |
0.8* Sfine ||
&
O’id 0.7 | g
o0 0.6 |- E
£ 05F .
s 04} E
Q
= 0.3} E
0.2 l i
0.1} E
00 1 1 1 1 1 1 1 1 Il 1 1 1 1 1 [1 2
MMM M M M M M MO 9IS IS
A A AR R R
SSSE2sEssZ2z55g58xC
—_ N M F 1 © I~ 0 D S N N
Iteration

Figure 6.13: Learning-rate schedules. Sy;,,; is the original schedule with 600k
iterations. Sjong is a similar schedule but extended to twice the length (1.2M iterations).
Sfine starts with a low learning rate and extends the schedule for a fine-tuning
(additional 500k iterations).

Architecture Datasets Sshort || Stong ~ Sfine
Chairs 4.45 - -

Chairs - 4.24 4.21

FlowNetS Things3D - 5.07 4.50

mixed - 4.52 4.10

Things3D —Chairs - 5.07 4.40

Chairs —Things3D - 424 3.79

Architecture Datasets Sshort || Stong Sfine
Chairs 3.77 - -

Chairs - 3.58 3.48

FlowNetC Things3D - 3.66 3.53

mixed - 3.41 3.29

Things3D —Chairs - 3.66 3.54

Chairs —Things3D - 3.58 3.04

Table 6.5: Dataset schedules. Results of training FlowNets with different schedules
on different datasets (one network per row). Numbers indicate endpoint errors on
Sintel train clean. FlyingChairs and FlyingThings3D are abbreviated to Chairs and
Things3D, mizred denotes an equal mixture of both. Training on Chairs first and
fine-tuning on Things3D yields the best results (the same holds true when testing on
the KITTI dataset; see [IMST17]).

63

(6.2.7)

(6.2.8)

(6.2.9)

6.3

(6.3.1)

6.3 Summary

We make the following observations:

The order of presenting training data with different properties matters.

Although FlyingThings3D is more realistic, training on FlyingThings3D alone leads to
worse results than training on FlyingChairs. The best results are consistently achieved

when first training on FlyingThings and only then fine-tuning on FlyingThings3D.

This schedule also outperforms training on a mixture of both datasets.

We conjecture that the simpler FlyingChairs dataset helps the network learn the
general concept of color matching without developing possibly confusing priors for
3D motion and realistic lighting too early. The result indicates the importance of
training data schedules for avoiding shortcuts when learning generic concepts with
deep networks.

FlowNetC consistently outperforms FlowNetS. In all cases of Table 6.5,
FlowNetC performs better than FlowNetS. We conclude that although it makes
the network less generic, including a correlation operation is more efficient.

Improved results. Just by modifying datasets and training schedules, we improved
the FlowNetS result by ~15% and the FlowNetC result by ~20%.

Summary

This section has shown that:

e The two different CNNs are capable of learning matching and regularization
heuristics for optical flow,

e FlowNetC contains more engineering but outperforms FlowNetS (which is most
generic),

e augmentation is very important and strongly affects performance,

e skip connections and deep supervision add some performance but are not
significant, and

e training details matter, especially the order of dataset presentation and best
results are obtained when training first on FlyingChairs and then on FlyingTh-
ings3D.

A truly revolutional insight is that learning optical flow with a plain encoder-decoder
network is possible.

64

65

Chapter 7

SceneFlowNet

The SceneFlowNet published in [MIH" 16] was the sole contribution of the author.

As described in Section 2.2, disparity estimation resembles a special case of the optical
flow problem. The FlowNetS and FlowNetC architectures as well as the network
stacks can therefore be applied to the disparity task. The benchmark results from
Chapter 9 in fact show that this can yield state-of-the-art results.

While disparity estimation is in some aspects simpler than optical flow estimation, the
“Ivy league” that combines both tasks is scene flow. It is required for reconstruction as
well as motion estimation and provides an important basis for numerous higher-level
challenges, such as driver assistance, autonomous systems and robot navigation. Over
the past decades, research has focused on the sub-tasks of disparity and optical flow
estimation with considerable success, while the full scene flow problem has not been
explored to the same extent. Although partial scene flow outside of occluded areas can
simply be assembled from the sub-task results, it is expected that the joint estimation
of all components would be advantageous.

Since the input to scene flow estimation comprises four different images (see Sec-
tion 2.3), it is not straightforward to design an architecture using correlations. The
most general solution for the joint task is to use a FlowNetS with the four frames
as input and the different modalities as output. We present the first scene-flow-
estimation CNN by constructing such a network from already existing Flow- and
DispNets.

As shown in Figure 7.1a, we use a FlowNetS to estimate flow wr,, s, between the
left frames from time ¢; to to and two DispNetSs to estimate the disparities d7—g4,,
di R, from left to right at times ¢; and ¢3. In order to construct a joint network,
we interleave these three networks as illustrated in Figure 7.1b. Basically, this just
combines the three data streams in one network by constructing larger convolutions
with more input and output channels. The output channels of each FlowNet and
DispNet then work only on input channels from the same network, while weights
to input channels of other networks are set to 0. As such, the networks are just
combined into one large network but still function completely independently.

(7.0.1)

7 SceneFlowNet

Time o N io
Time Left Sl [lich! FlowNetS
3 ; di_p. :
ol e | =

DispNetS at t,

‘

DispNetS at t,

o9~

(a) The figure shows our networks | (b) Interleaving of the weights of the FlowNet (green)
inserted into Figure 2.11. The dis-| and the two DispNets (red and blue) into a Scene-
parities dr g, and dr— g, are es-| FlowNet. The figure shows how three convolutions
timated by DispNets, and the opti-| from the same level are merged into one. The new
cal flow wy +,-,¢, is estimated by a | filter masks are created by taking the weights of
FlowNet. one network (left) and setting the weights of the
other networks to zero, respectively (middle). The
outputs from each network are then concatenated to
yield one big network with three times the number
of inputs and outputs (right).

Figure 7.1: Joint SceneFlowNet from a FlowNet and two DispNets. The
SceneFlowNet outputs the flow wy, ;,—¢,, the disparities d;,—r,, di— Ry, and addi-
tionally the disparity change w.

Flow | Disparity | Disp. Ch
FlowNet 13.78
DispNet 2.41
FlowNet +500k 12.18
DispNet +500k 2.37
SceneFlowNet +500k || 10.99 2.21 0.79

Table 7.1: SceneFlowNet compared to single FlowNet and DispNet. The
table shows the performance of solving the single tasks compared to solving the joint
scene flow task, trained and tested on FlyingThings3D. FlowNet was initially trained
for 1.2M and DispNet for 1.4M iterations. +500k denotes 500k more iterations. The
SceneFlowNet is initialized with the FlowNet and DispNet as described in Figure 7.1b.
The table shows that solving the joint task yields better results in each individual
task.

It gets interesting when one replaces the zeros by a small amount of noise and
fine-tunes the resulting network for the joint scene flow task. In this case, mutual
connections can evolve between the base networks. The results are given in Table 7.1.
They show that:

Solving the joint scene flow task inside one network performs better than solving the
individual tasks.

This concludes that scene flow can be solved as a joint estimation task by CNNs.

66

67

8.1

Chapter 8

Network Stacks

The network stacks and concept of FlowNet 2.0, published in [IMSt 17], are the sole
contribution of the author.

Chapter 6 has shown that optical flow estimation with CNNs is generally possible
but in terms of quality not close to state of the art yet. Traditional approaches rely
on iterative methods [BM11, WRHS13, RWHS15, BTS15| and it is reasonable to ask
whether CNNs can also benefit from estimating optical flow in multiple steps.

Stacking two Networks for Flow Refinement

To this end, we propose to stack networks to refine the result sequentially. In order
to produce an initial solution, a FlowNet-S or FlowNet-C is used. The solution is
then fed into another encoder-decoder network with the task to obtain an improved
solution. This is illustrated in Figure 8.1. The first network in the stack gets the

e
. - Flow

[Magnitude

Refine-
F > Flow > Flow —> Flow

ment

Image 2 ightness rightness

rror

Figure 8.1: FlowNet2 network stack. The base network operates on the two
images and can be a FlowNetS or FlowNetC. Subsequent networks get the images,
the previously estimated flow, the warped second image and a brightness error as
input. The brightness error is computed by subtracting the warped second image
from the first one. The stack is optionally followed by a final refinement network that
only gets the first image in addition to flow, flow magnitude and brightness error as
input.

8.1 Stacking two Networks for Flow Refinement

Stack Training Warping | Warping | Loss after EPE on | EPE on
architecture enabled included | gradient Chairs Sintel
Netl | Net2 enabled | Netl | Net2 test clean
Netl v - — — v — 3.01 3.79
Netl + Net2 X 4 X - - v 2.60 4.29
Netl + Net2 4 4 X - X v 2.55 4.29
Netl + Net2 4 4 X - 4 v 2.38 3.94
Netl + W + Net2 X 4 v = = 4 1.94 2.93
Netl + W + Net2 v 4 v v X v 1.96 3.49
Netl + W + Net2 4 4 v 4 v v 1.78 3.33

Table 8.1: Ablation study for stacking two networks. Evaluation of options
when stacking two FlowNetS networks (Netl and Net2). Netl was trained with the
Chairs —+Things3D schedule from Section 6.2.8. Net2 is initialized randomly and
subsequently. Netl and Net2 are then trained together, or only Net2 is trained
on Chairs with Sjyn,. The column “Warping gradient enabled” indicates whether
the warping operation produces a gradient during backpropagation. When training
without warping, the stacked network overfits to the Chairs dataset. The best results
on Sintel are obtained when fixing Netl and training Net2 with warping.

images Iy and Iy as input. Subsequent networks get Iy, I, and the previous flow
estimate w; = (u;, v;) where ¢ denotes the index of the network in the stack.

To make an assessment of the previous error and the computation of an incremental
update easier for the network, we also optionally warp the second image Is(x,y) via
the flow w; using bilinear interpolation to I~27,~(a:, y) = Ia(x + u;, y + v;). This way,
the next network can check how well the estimated flow reconstructs the first image

by comparing I, and I~27¢(:1:, y) and can focus on finding the remaining increment.

This is also motivated by the Gauss-Newton approach from Section 3.2.1 that uses
different warpings of the second image to compute updates. When using warping, we
additionally provide I~2’i and the error e; = ||I~2,i — I]| as input to the next network
(see Figure 8.1). Thanks to bilinear interpolation, the derivatives of the warping

operation can be computed, which enables training of stacked networks end-to-end.

For details of the derivation, the reader is referred to the supplemental material
of [IMS*17].

Table 8.1 shows the effects of stacking two networks, of warping and of end-to-end
training. We take the FlowNet2-S from Chapter 6 (trained on Chairs with Sj,,g as
well as Things3D with Sgp,,) and add another FlowNetS on top. The second network
is initialized randomly, and then the stack is trained on Chairs with the schedule
Siong- We experimented with two scenarios: keeping the weights of the first network
fixed or updating them together with the weights of the second network. In the latter
case, the weights of the first network are fixed for the first 400k iterations to first
provide a good initialization of the second network.

We report the error on Sintel train clean and on the test set of Chairs. Since the
Chairs test set is much more similar to the training data than Sintel, comparing
results on both datasets allows us to detect tendencies of overfitting.

68

Chapter 8 Network Stacks

69

(8.1.1)
(8.1.2)

(8.1.3)

(8.1.4)

8.2

Number of Networks

1 2 3 4
Architecture S ss sss
Runtime Tms | 14ms | 20ms —
EPE 4.55 | 3.22 3.12
Architecture S SS
Runtime 18ms | 37ms — —
EPE 3.79 | 2.56
Architecture C cs css Csss
Runtime 17ms | 24ms | 31ms | 36ms
EPE 3.62 | 2.65 2.51 2.49
Architecture C CS CSS
Runtime 33ms | 51lms | 69ms —
EPE 3.04 | 2.20 2.10

Table 8.2: FlowNet 2 stack variants. Results on Sintel train clean for some
variants of stacked FlowNet architectures following the best practices of Section 6.2.8
and 8.1. Each new network was first trained on Chairs with Sj,,, and then on
Things3D with Sfpe (Chairs =Things3D schedule), while existing networks were kept
fixed. Forward pass times are taken from an Nvidia GTX 1080.

We make the following observations:

Just stacking networks without warping yields better results on Chairs but worse
ones on Sintel; the stacked network is overfitting.

Stacking with warping always improves results.

Adding an intermediate loss after Netl is advantageous when training the stacked
network end-to-end.

The best results are obtained by keeping the first network fixed and only training the
second network.

Clearly, since the stacked network is twice as big as the single one, overfitting is an
issue. The positive effect of flow refinement after warping can counteract this problem.
Yet, the best of both is obtained when the stacked networks are trained one after the
other. This avoids overfitting while having the benefit of flow refinement.

Stacking Multiple Diverse Networks

Rather than stacking identical networks, it is possible to stack networks of different
types (FlowNetC and FlowNetS) as illustrated in Figure 8.1. We call the first one
the bootstrap network as it differs from the second network by its inputs. However,
the second network could be repeated for an arbitrary number of times in a recurrent
fashion. We conducted this experiment and found that applying a network with the
same weights multiple times as well as fine-tuning this recurrent part does not improve

(8.2.1)

8.2.1

8.2 Stacking Multiple Diverse Networks

results (for details, the reader is referred to the supplemental material of [DFIT15]).
As also done in [NYD16, CP17]|, we therefore add networks with different weights to
the stack. We use FlowNetC only in case of the bootstrap network, as the input to
the next network is too diverse to be properly handled by the Siamese structure of
FlowNetC.

Compared to identical weights, stacking networks with different weights increases the
memory footprint but does not increase the runtime. In this case, the top networks
are not constrained to a general improvement of their input but can perform different
refinement tasks at different stages, and the stack can be trained in smaller pieces by
fixing existing networks and adding new networks one at a time. We do so by using
the Chairs —Things3D schedule with Sj,,s and Sgy,. from Section 6.2.8 for every new
network as well as the best configuration with warping from Section 8.1 (row 4 of
Table 8.1).

Notation: For networks trained with the schedule Chairs —Things3D, we use the
name FlowNet2. Networks in a stack are trained with the same schedule one after
the other. For the stack configuration, we append upper- or lower-case letters to
indicate the types of networks and the original size or thin version with 3/8 of the
channels. E.g.: FlowNet2-CSS stands for a network stack consisting of one FlowNetC
and two FlowNetSs. FlowNet2-css is the same network stack but with fewer channels.
“FlowNet2” by itself refers to the FlowNet2-CSS network stack from [IMS™17] that
includes an extra network for small displacements trained on ChairsSDHom. As
results from Chapter 9 will show, small displacements can be treated in the main
stack with according training. For this reason, the small displacement network is
omitted here.

Table 8.2 shows the performance of different network stacks. Most notably, the
final FlowNet2-CSS result improves by ~30% over the single network FlowNet2-C.
Furthermore, two small networks always outperform one large network, despite being
faster and having fewer weights: FlowNet2-ss (11M weights) over FlowNet2-S (38M
weights) and FlowNet2-cs (11M weights) over FlowNet2-C (38M weights). Training
smaller units step by step proves to be advantageous and enables to train very deep
networks for optical flow.

Performance and Runtime

The last section illustrated that network stacks can boost the performance of optical
flow estimation while still maintaining low runtimes. Figure 8.2 (see next page) gives
an endpoint error vs. runtime comparison of the FlowNet2 family and traditional
methods (a full benchmark evaluation will be given in Chapter 9). Depending on the
type of application, the different stack configurations provide variants from 8 to 140
frames per second, which is orders of magnitude faster than traditional approaches
with comparable performances. Up to today, many extensions that increased the
pqrformance even further have been proposed by the community [SYLK18, HTL18,
NSM18|.

70

Chapter 8 Network Stacks

71

(8.2.2)

REAL-
WORLD
DATA

8.3

150 60 30
fps fpsfps MPI Sintel (train final)
T
@ DIS-Fast LDOF (GPU)
6 FlowNetC @ LDOF
€3l FlowNetS P
a0 5 FN2-s @ PCA-Flow ® CPU
= i : GPU
% @ PCA-Layers @ Ours
= |
2| ENzs EpicFlow @ DeepFl
crlo ee ow
< FN2-css-ft-sd FlowNet2 P " . P
3 | FN2-CSS-fo-sd ® FlowField
vl bt el L
10° 10* 102 108 10* 10° 108

Runtime (milliseconds per frame)

Figure 8.2: FlowNet2 family endpoint error vs. runtime. Endpoint error
vs. runtime comparison to the fastest existing methods (at the time of publica-
tion [IMS™17]) with available code. The FlowNet2 family outperforms other previous
methods by a large margin. “-ft-sd” indicates network stacks that were fine-tuned on
the ChairsSDHom dataset.

Quantitative evaluations are shown in Figures 8.3 and 8.4:

The observable improvement over FlowNetS is very large. Notably, FlowNet2 provides
smooth flow fields and at the same time yields very crisp motion boundaries and fine
details, while none of the traditional methods actually provide a comparable level
of detail. This proves that CNNs are capable of solving the regularization problem
much better.

Interestingly, this is also the case for the real-world data from Figure 8.4. Although
the networks were trained on the unrealistic FlyingChairs, FlyingThings3D and
ChairsSDHom dataset, they also seem to perform better on real data than traditional
methods, yielding fine details and being very robust to compression artifacts. This
proves that for the optical flow task, the important aspect of the training data is the
concept of correspondence and not the actual objects themselves.

Evaluation on Applications

In order to assess performance of FlowNet2 in real-world applications, we compare the
performance of action recognition and motion segmentation. For both applications,
good optical flow is key. Thus, a good performance on these tasks also serves as an
indicator for good optical flow.

For motion segmentation, we rely on the well-established approach by Ochs et
al. [OMB14] to compute long-term point trajectories. A motion segmentation is
obtained from these by using the state-of-the-art method from Keuper et al. [KAB15].
The results are shown in Table 8.3 (turn page). The original model in Ochs et
al. [KAB15] is built on LDOF [BM11]. We also included other popular optical flow
methods in the comparison. The initial FlowNetS [DFIT15] did not prove to be
useful for motion segmentation. In contrast, the FlowNet2 is as reliable as other
state-of-the-art methods while being orders of magnitude faster.

8.8 FEwvaluation on Applications

FlowFlieds [BTS15] PCA-Flow [WB15] FlowNetS [DFI*15] FlowNet2 [IMS*+17]
(22,810 ms) (140 ms) (18 ms) (123 ms)

= - EPE: 0.18 EPE: 0.70 EPE: 0.86 EPE: 0.28

" B .?‘ r" .’
NN S AN Ay

EPE:6.18 [EPE: 13.11 EPE: 9.24 EPE: 7.92
.\L o | \

EPE: 7.22 EPETS EPE: 7.71 EPE: 4.70

-43~-.LA L A2 4N

Figure 8.3: FlowNet2 results on Sintel. The table shows quantitative results
on Sintel from traditional methods, the original FlowNetS [DFI*15| trained on
FlyingChairs with S04 and FlowNet2 [IMST17| (which includes FlowNet2-CSS).
FlowNet2 performs similar to FlowFields and is able to extract fine details, while meth-
ods running at comparable speeds perform much worse (PCA-Flow and FlowNetS).

Image Overlay Ground Truth

FlowFields DeepFlow LDOF (GPU) PCA-Flow FlowNetS FlowNet2
[BTS15] [WRHS13] [BMI1] [WB15] [DFI*15] [IMS*17]

50,109ms 21,566ms 3,967ms 157ms 14ms 91ms
) &
{
- v -
L X3

X »N ., 3
W i A

Image Overlay

~»
3

-

13,515ms. 4,550ms. 2,962ms s2ms 7ms 40ms

Figure 8.4: FlowNet2 results on real images. The table shows quantitative results
on real images from traditional methods, the original FlowNetS [DFI*15| trained on
FlyingChairs with S04 and FlowNet2 [IMST17] (which includes FlowNet2-CSS).
The top two rows are from the Middlebury dataset and the bottom three from UCF101.
Note how well FlowNet2 generalizes to real-world data, i.e., it produces smooth flow
fields as well as crisp boundaries and is robust to motion blur and compression
artifacts. Given timings of methods differ due to different image resolutions.

72

Chapter 8 Network Stacks

73

8.4

(8.4.1)

Optical flow is also a crucial feature for action recognition. In order to assess the
performance, we trained the temporal stream of the two-stream approach from
Simonyan et al. [SZ14a] with different optical flow inputs. Table 8.3 shows that
FlowNetS [DFIT15] did not provide useful results, while the flows from the FlowNet2
family yields comparable results to state-of-the-art methods.

Summary

This section has shown that:

Optical flow estimation performance can be significantly increased with network
stacks,

network stacks deliver smooth flow fields, very crisp motion boundaries and
fine details,

CNNs solve the regularization problem much better than traditional methods,

CNNs also have an extremely better speed/accuracy trade-off (by orders of
magnitude),

networks trained on the synthetic dataset generalize to real data very well, and

real-world applications like motion segmentation and action recognition perform
very well with FlowNet2 flows.

Motion Seg. Action Recog.
F-Measure | Extracted Accuracy
Objects

LDOF-CPU |[BM11] 79.51% 28/65 79.91%"
DeepFlow [WRHS13| 80.18% 29/65 81.89%
EpicFlow [RWHS15] 78.36% 27/65 78.90%
FlowFields [BTS15| 79.70% 30/65 79.38%
FlowNetS [DFIT15] 56.87%* 3/62} 55.27%
FlowNet2-css-ft-sd 77.88% 26/65 75.36%
FlowNet2-CSS-ft-sd 79.52% 30/65 79.64%
FlowNet2 79.92% 32/65 79.51%

8.4 Summary

Table 8.3: Motion segmentation and action recognition results by us-
ing different methods. Motion Segmentation: We report results by using
[OMB14, KAB15| on the training set of FBMS-59 [BM10, OMB14| with a density
of 4 pixels. Different densities and error measures are given in the supplemental
material of [IMS*17]. “Extracted objects” refers to objects with F > 75%. *FlowNetS
is evaluated on 28 out of 29 sequences; on the lion02 sequence, the optimization did
not converge even after one week. Action Recognition: We report classification
accuracies after training the temporal stream of [SZ14a|. We use a stack of five optical
flow fields as input. "In order to reproduce results from [SZ14a], for action recognition,
we use the OpenCV LDOF implementation. Note the generally large difference for
FlowNetS and FlowNet2 as well as the performance compared to traditional methods.

74

75

9.1

Chapter 9

Joint Flow, Occlusion and Motion
Boundary Estimation

The work presented in this chapter was started by the author and was continued
together with Tonmoy Saikia. The author contributed the loss functions for motion
boundaries and occlusions as well as the network setups.

Occlusions play an important role in disparity and optical flow estimation, since
matching costs are not available in occluded areas and occlusions indicate depth or
motion boundaries. As explained in Section 3.5, occlusions and motion boundaries
are hard to integrate into traditional methods and pose a significant problem. In
the past, occlusion estimation was stated as “notoriously difficult” [LZS13] and a
“chicken-and-egg” problem in the literature [HR17, PRCBP16]. It is therefore most
interesting to ask how the learned CNN approaches from this work can solve these
problems.

Estimating Occlusions with CNNs

We extend the end-to-end CNN approach of Chapter 6 by occlusion estimation. To
this end, we perform a set of experiments with FlowNetS with different inputs and
outputs. For the occlusions, we add further output channels with per-pixel classes 0
and 1 to indicate occlusion. We train this output with a cross-entropy loss against
the ground truth. The setup is illustrated in Figure 9.1:

Image 1

— |Occlusions
Image 2

(=) ~([=1)

Figure 9.1: Occlusion estimation. We extend the basic FlowNet from Figure 6.1
by occlusion estimation and perform experiments with different in- and outputs.
Optionally, we input flows, warped images and forward /backward consistency maps.

7

9.1 FEstimating Occlusions with CNNs

F-measure
| Input . . Sintel train clean
FlyingThings3D [BWSB12|

- | S2DFlow |LZS13| - 0.470

1 | Images A+B 0.790 0.545

2 | Images A+B, GT fwd Flow 0.932 0.653

3a | Images A+B, GT fwd Flow, GT bwd flow 0.930 -

3b | Images A+B, GT fwd Flow, GT bwd flow warped+flipped 0.943 -

3¢ | Images A+B, GT fwd Flow, GT fwd/bwd consistency 0.943 -

Table 9.1: Estimation of only occlusions from different inputs with a
FlowNetS. The first column indicates the experiment number. Networks were
trained on FlyingChairs with schedule Sj,,4/2 and fine-tuned on FlyingThings3D with
Sfne/2. S2DFlow was the state-of-the-art method at the time of publication (ECCV
2018). The results show that contrary to literature [PRCBP16, LZS13, HAB11],
occlusion estimation is even possible from just the two images and the result is
significantly better than state of the art. Since Sintel train clean [BWSB12] does
not provide the ground-truth backward flow, we additionally report numbers on
FlyingThings3D [MIHT16]. Providing the optical flow, too, clearly improves the
results. Contrary to traditional methods, only the forward flow is sufficient.

Before we come to a joint estimation of occlusions and optical flow, we investigate
some experiments to estimate only occlusions from different input data. The results
are shown in Table 9.1.

In order to determine occlusions, one basically has to check if a patch from the first
image is still present in the second image. This is very similar to the correspondence
estimation task in that it requires patch comparison. Instead of outputting the
correspondence to the matching patch, the output in this case is whether a matching
patch exists. In order to make this decision, a local neighborhood usually has to be
considered, and a locally determined threshold on the similarity between the patches
is required. The results from the first experiment of Table 9.1 show that CNNs
can actually perform this task extremely well without the explicit correspondence
estimation.

As a next step, we additionally provide the ground-truth forward optical flow to
the network (experiment #2 in Table 9.1). In this setting, the network has to
compare source and target locations of flow vectors to find occluded areas. Since the
ground-truth flow input comes in addition to the images from the first experiment,
the performance increases as expected.

The traditional way to determine occlusions is to determine if forward and backward
flows are consistent [ADPS07| (see also Figure 3.10). In the final set of experiments,
we therefore also provide different versions of the backward flow. Experiment #3a
directly includes the backward flow. Note that a consistency check requires to look up
the backward flow at the target location of the forward flow. For this reason, we also
warp the backward flow with the forward flow in experiment #3b. In experiment #3c,
we do not input the backward flow directly but instead precompute the consistency
(the Euclidean difference between forward and backward flow) and input it. We
observe that none of these really outperform inputting only the forward flow.

76

Chapter 9

7

(9.1.1)

(9.1.2)

(9.1.3)

9.2

9.2.1

Joint Flow, Occlusion and Motion Boundary Estimation

Configuration EPE | F-measure
1 | FlowNetC estimating flow 3.21 -
2 | FlowNetC estimating occlusions - 0.546
3 | FlowNetC estimating flow + occlusions 3.20 0.539
4 | FlowNetC-Bi estimating fwd/bwd flow + fwd occlusions || 3.26 0.542

Table 9.2: Joint estimation of flow and occlusions with a FlowNetC. The
first column indicates the experiment number. Networks were trained on FlyingChairs
with schedule Sjoy/2 and fine-tuned on FlyingThings3D with Sg,./2. Results are
from Sintel train clean. As can be seen from the results, joint estimation of oclusions
and flow neither meaningfully improves nor degrades the flow performance.

From the experiments of Table 9.1, we conclude:

Occlusion estimation without optical flow is possible and by itself sur-
passes state of the art. In contrast to existing literature, where classifiers are
always trained with flow input [PRCBP16, LZS13, HAB11, LSS12b] or occlusions
are estimated jointly with optical flow [SLP14, HR17|, we show that a deep network
can learn to estimate the occlusions extremely well directly from two images.

Using the flow as input helps. The flow provides the solution for correspondences,
and the network can use these correspondences. Clearly, this helps, particularly since
we provided the correct optical flow.

Adding the backward flow yields almost the same results. Providing the
backward flow directly does not help. This can be expected, because the information
for a pixel of the backward flow is stored at the target location of the forward
flow, and a look-up is difficult for a network to perform. Warping the backward
flow or providing the forward/backward consistency yields almost the same result.
This finding is contrary to traditional methods, where occlusion checks are usually
performed on forward and backward flow.

Joint Estimation of Occlusions and Flow

Within a Single Network

In this section, we investigate estimating occlusions jointly with optical flow, as
many traditional methods try to do [SLP14, HR17|. Here, we provide only the image
pair and therefore can use a FlowNetC instead of a FlowNetS. The first experiment
from Table 9.2 shows that just occlusion estimation with a FlowNetC performs
similar to the FlowNetS of the last section. Surprisingly, from experiments #1 to #3
of Table 9.2, we find that joint flow estimation neither meaningfully improves nor
deproves the flow or the occlusion quality. In row #4 of the table, we additionally
estimate the backward flow to enable the network to reason about forward/backward
consistency. The suffix “-Bi” indicates that we add a second correlation from the
second to the first image to the network. However, we find that this does not affect
performance in a meaningful way either.

(9.2.1)

9.2.2

9.2 Joint Estimation of Occlusions and Flow

As mentioned in the last section, both occlusion and flow estimation require finding
similar patches among both images. When estimating only optical flow, occlusions
need to be regarded by deciding that no correspondence exists for an occluded pixel
and by filling the occluded area with information inferred from the surroundings.
Therefore, knowledge about occlusions is mandatory for correct correspondence and
flow estimation.

Since the results of Section 9.1 show that occlusion estimation is an easy task for
CNNs and making the occlusion estimation in our network explicit does not change
the result, we conclude that an end-to-end trained network only for flow already
implicitly performs all necessary occlusion reasoning. By making it explicit, we
obtain the occlusions as an additional output at no cost, but the flow itself remains
unaffected.

With a Refinement Network

In the last section, we investigated the joint estimation of flow and occlusions in a
single network, with the result that the network implicitly solves the “chicken-and-egg”
problem very well. We now extend the occlusion estimation to a network stack
and investigate if the estimated occlusions can help refine the flow. To this end,
we propose the three stack variants from Figure 9.2 that will be explained in the
following.

We make two general modifications: 1.) We leave away the brightness error input
for the refinement networks as it can easily be computed by the network by taking
the difference between the warped second and the first image. 2.) We further modify
the stack by integrating the suggestion of Pang et al. [PSRT17] and add residual
connections to the refinement networks. As described in [HZRS16], it is not trivial
for CNNs to learn an identity mapping. We find that posing the second network as
residual leads to a similar overall performance, but with the difference of much faster
convergence. 3.) Due to the faster convergence, we shorten all schedules by a factor of
2, i.e., each network in the stack is trained with schedule Sjo,4/2 on FlyingChairs and
Sfine/2 on FlyingThings3D. While this slightly changes results of individual networks
in the stack, we find that the overall performance with a stack of three networks
converges to the same result as FlowNet2.

The first variant of our joint estimation stack shown in Figure 9.2a (see next page) is
a simple extension of the stack from Chapter 8.1 by estimating and inputting the
occlusions in addition to the flow.

The second variant from Figure 9.2b (see next page) extends the stack to estimating
forward and backward flows jointly, as is common in traditional methods that perform
occlusion reasoning [SLP14, HR17|. In principle, the second network can make use
of the consistency constraint outside of occluded regions in this setup by using the
occlusion output from the first network. Note, though, that such a consistency check
requires warping, as the backward flow has to be looked up at the target positions of
the forward flow.

78

Chapter 9

79

Joint Flow, Occlusion and Motion Boundary Estimation

Img 1

Warp.

Img 2
Img 1

Flow Flow

O O e

Occ Occ.

Img 2

(a) Extension of network stack with occlusions and residual connections.

Aux.
Tmg 1 Fwd Flow Fwd Flow
Fwd Occ. @ Fwd Occ.
0 B o o
Bwd Flow Bwd Flow|
Ly 2 Bwd Oce. Bwd Oce.

(b) Architecture for joint estimation of forward/backward flows and occlusions. The suffix
“-Bi” indicates that we add a second correlation from the second to the first image to the
network. See figure caption for more details.

N
FlowNetS

®

|
Bwd Occ. [~ Bwd Occ.
> Bwd Flow]- > Bwd Flow
Img 2
Aux.

(¢) Dual forward and backward estimation architecture with mutual warping. See figure
caption for more details.

Figure 9.2: Joint flow and occlusion refinement stack variants. Overview of
possible refinement stacks for flow and occlusions. The residual connections are only
shown in the first figure and indicated by + elsewhere. Aux. refers to the images
plus a warped image for each input flow respectively.

In order to model the warping explicitly, we propose the third variant shown in
Figure 9.2¢, in which we model forward and backward flow estimation as separate
streams and perform the mutual warping to the other direction after each network.
E.g., we warp the estimated backward flow after the first network to the coordinates
of the first image by using the forward flow. The network then has the forward and
the corresponding backward flow at the same pixel position and can compute the
difference to check the consistency directly.

(9.2.2)

9.3

9.8 Flow, Occlusion and Motion Boundary Estimation Stack

Configuration EPE | F-measure
Only flow as in FlowNet2-CS [IMST17] || 2.28 -

+ occlusions (Figure 9.2a) 2.25 0.590
+ bwd direction (Figure 9.2b) 2.77 0.572

+ mutual warping (Figure 9.2¢) 2.25 0.589

Table 9.3: Results of joint flow and occlusion refinement stacks. Networks
were trained on FlyingChairs with schedule Sj,,4/2 and fine-tuned on FlyingThings3D
with Spne/2 respectively. Results are from Sintel train clean. Simply adding occlusions
in a straightforward manner performs better than or similar to more complicated
approaches. In general, adding occlusions does not meaningfully improve the flow
estimation.

The results of the three architecture variants are given in Table 9.3. While the
first variant (Figure 9.2a) and the last variant (Figure 9.2¢) are indifferent about
the additional occlusion input, the architecture with joint forward and backward
estimation (Figure 9.2b) performs worse. This shows that the network does not
exploit the redundancy between forward and backward flows, but estimating them
jointly rather increases the complexity.

Overall, we find that designing architectures motivated by traditional methods to
model consistency implicitly or explicitly does not improve the results. Furthermore,
adding the occlusion estimation does not help the flow estimation. This means that
either the occluded areas are already filled correctly by the base network or in a
stack without explicit occlusion estimation, the second network can easily recover
occlusions from the flow (which was found in Statement 9.1.2) and does not require
the explicit input.

We finally conclude that occlusions can be obtained at no extra cost but do not
actually influence the flow estimation, and that it is best to leave the inner workings
to the optimization by using only the baseline variant (Figure 9.2a). This is contrary
to the findings from traditional methods. However, the quality of the estimated
occlusions by itself surpasses traditional methods by far and thus is important for
applications that actually require occlusions.

Flow, Occlusion and Motion Boundary Estimation Stack

In order to estimate high-quality occlusions and motion boundaries along with the
flow, we extend the stack of Figure 9.2a to the full FlowNet2 stack, as illustrated in
Figure 9.3 (see next page). While occlusions are important for refinement from the
beginning, boundaries are only required in later refinement stages. Therefore, we add
the boundaries in the third network. Experimentally, we also found that when adding
depth or motion boundary prediction in earlier networks, these networks predicted
details better but failed more rigorously in case of errors. Predicting exact boundaries
early would be contrary to the concept of a refinement pipeline.

80

Chapter 9

81

9.4

(9.4.1)

9.4.1

(9.4.2)

9.4.2

Joint Flow, Occlusion and Motion Boundary Estimation

Img 1 Img 1 Img 1

Warp. Warp. Warp. 1> Error
Img 2 Img 2 Img 2} | Mag. {
Tig T _ _ g-[Flow |3 - plFlow
ow ow
o SwNeis NI . Bporn
Occ. Occ. ‘ ‘ .
Tmg 2 Bnd. H" Yﬁ Bnd.

Figure 9.3: Flow, occlusion and motion boundary estimation stack. In order
to estimate occlusions and motion boundaries, we follow the FlowNet2 architecture
and build the full stack. In the final network, we add motion boundaries to refine all
modalities together.

Benchmark Results

We train the full network stack in the last section for optical flow and disparity
estimation with additional outputs for occlusions as well as depth or motion boundaries
and evaluate all modalities on public benchmarks.

We name the networks from the stack of Figure 9.3 that are trained with sched-
ules Siong/2 and Sfne/2 on FlyingChairs and FlyingThings3D, DispNet3 and
FlowNet3. We denote the optional refinement network with an “R” in the name, e.g.
FlowNet3-CSSR.

Occlusion Estimation

In Tables 9.4 and 9.5, we compare our occlusion estimations to other methods. In
terms of disparity our method outperforms Kolmogorov et al. [KMT14] for all scenes
except one. For the more difficult case of optical flow, we outperform all existing
methods by a very large margin:

At the time of publication at ECCV 2018, FlowNet3-CSSR sets a new state of the
art for occlusion estimation.

As already indicated by Table 9.1, this confirms that CNNs can solve the occlusion
estimation problem much better than any traditional algorithm. The qualitative
results of Figure 9.4 (see next page) also support this finding. While consistency
checking is able to capture mainly large occlusion areas, S2DFlow |[LZS13| also
manages to find some details. In many cases, MirrorFlow [HR17| misses details. On
the other hand side, our CNN is able to estimate the fine details very well.

Motion Boundary Estimation

For motion boundary estimation, we compare our CNNs to Weinzaepfel et al. [WRHS15],
which is the state-of-the-art method to the best of our knowledge. It uses a random
forest classifier and is trained on the Sintel dataset. Although we do not train on
Sintel, judging by the results of Table 9.6, our CNN outperforms their method by a

(9.4.3)

9.4 Benchmark Results

F-Measure
Cones | Teddy | Tsukuba | Venus || Sintel clean | Sintel final
Kolmogorov et al. [KMT14] || 045 | 0.63 0.60 0.41 - -
Tan et al. [TCM17] 0.44 0.40 0.50 0.33 - -
Ours (DispNet3-CSS) 0.91 0.57 0.68 0.44 0.76 0.72

Method

Table 9.4: Evaluation of estimated disparity occlusions from our DispNet3.
We compare our DispNet3 to other methods on examples from the Middlebury 2001
and 2003 datasets (results of Kolmogorov et al. [KMT14] and Tan et al. [TCM17]
taken from [TCM17]) as well as the Sintel train dataset. Only in the Teddy scene
of Middlebury, our occlusions are outperformed by Kolmogorov et al. [KMT14].
Unfortunately, no previous results are available on the Sintel benchmark.

F-Measure
Method Lype clean \ final
FlowNet2 [IMS*17] consistency | 0.377 | 0.348
MirrorFlow [HR17| estimated | 0.390 | 0.348
S2DFlow |LZS13] estimated | 0.470 | 0.403
Ours (FlowNet3-CSSR) | estimated | 0.703 | 0.654

Table 9.5: Evaluation of estimated flow occlusions from our FlowNet3. We
compare our FlowNet3 to other occlusion estimation methods on the Sintel train
dataset. For the first entry, occlusions were computed by using forward /backward
consistency post-hoc. Our approach yields much better occlusions by a large margin
on both the clean and final version of the dataset.

’ Method ‘ Sintel clean ‘ Sintel final
Weinzaepfel et al. [WRHS15] 76.3 68.5
Ours (FlowNet3-CSSR) 86.3 79.5

Table 9.6: Evaluation of estimated motion boundaries from our FlowNet3.
We compare our FlowNet3-CSSR motion boundary estimation to Weinzaepfel et
al. [WRHS15] on the Sintel train dataset. The table shows the mean average precision
as computed with their evaluation code. Although Weinzaepfel et al. [WRHS15]
trained on the Sintel train clean dataset, our method outperforms theirs by a large
margin on both the clean and final version of the dataset.

large margin. The improvement in quality is also visible very well in the qualitative
results from Figure 9.5.

At the time of publication at ECCV 2018, FlowNet3-CSSR sets a new state of the
art for motion boundary estimation.

82

Chapter 9 Joint Flow, Occlusion and Motion Boundary Estimation

83

MirrorFlow [HR17

Figure 9.4: Qualitative results for occlusion estimation. In comparison to other
methods and the forward-backward consistency check, our method is able to capture
very fine details and is very close to the ground truth.

(c) Weinz. et al. [WRHS15]

-

(d) Flow ground truth (e) Ours (hard) (f) Ours (soft)

Figure 9.5: Qualitative results for motion boundary estimation. Our approach
succeeds in detecting the object in the background and has less noise around motion
edges than existing approaches (see green arrows). Weinzaepfel et al. detect some
correct motion details in the background. However, these details are not captured in
the ground truth.

9.4.3

(9.4.4)

9.4.4

(9.4.5)

9.4 Benchmark Results

Method Sintel KITTI KITTI Runtime
(clean) (2012) (2015) (msecs)
AEE AEE Out-noc AEE Dl-all
train train test train test
Standard:
SGM [Hir05] 19.62 10.06 - 721 10.86% 1,100
CNN-based:
Our DispNetC [MIHT16] 5.66 1.75 - 1.59 - 60
Our DispNetC-ft [MIH'16] || 21.88 1.48 4.11% (0.68) 4.34% 60
CRL [PSR*17] 16.13 1.11 - (0.52) 2.67% 47
GC-Net [KMD*17] - - 1.7%% - 2.87% 90
MC-CNN-acrt [ZL14 - - 2.43% - 3.89% | 67,000
DRR [GK17] - - - - 3.16% 40
L-ResMatch [SW17] - - 2.27% - 3.42% 42,000
With joint occl. est.:
SPS stereo [YMU14] - - 3.39% - 5.31% 2,000
Our DispNet3-CSS 2.33 1.40 - 1.37 - 70
Our DispNet3-CSS-ft 5.53 (0.72) 1.82% (0.71) 2.19% 70
Our DispNet3-css 2.95 1.53 - 1.49 - 30

Table 9.7: Benchmark results for disparity estimation. We report the average
endpoint error (AAE) for Sintel. On KITTI, Out-noc and D1-all are used for
the benchmark ranking on KITTI 2012 and 2015 respectively. Out-noc shows the
percentage of outliers with errors of more than 3px in non-occluded regions, whereas
D1-all shows the percentage in all regions. Entries in parentheses denote methods
that were fine-tuned on the evaluated dataset. Our network denoted with “-ft” is
fine-tuned on the respective training datasets. Timings were taken from an Nvidia
GTX 1080Ti. We obtain state-of-the-art results on Sintel and KITTI 2015. Also,
our networks generalize well across domains, as shown by the good results of the
non-fine-tuned networks.

Disparity Estimation

The benchmark results for disparity estimation are given in Table 9.7. Note that all
other CNN approaches appeared after DispNet which was itself contained in one of
the publications from this thesis [MIHT16].

At the time of publication at ECCV 2018, our DispNet3-CSS sets a new state of the
art on Sintel, and our DispNet3-CSS-ft does so on KITTI 2015.

Optical Flow Estimation

The benchmark results for optical estimation are given in Table 9.8 (see next page).
Note that all other CNN approaches appeared after FlowNet which was itself contained
in one of the publications from this thesis [DFI*15].

At the time of publication at ECCV 2018, our FlowNet3-CSS-ft sets new states of
the art on KITTI 2012 and KITTI 2015.

84

Chapter 9 Joint Flow, Occlusion and Motion Boundary Fstimation

85

9.5

Method Sintel Sintel KITTI KITTI Runtime
(clean) (final) (2012) (2015) (msecs)
AEE AEE AEE Out-noc AEFE F1-all
train test train test train test train test
Standard:
EpicFlow [RWHS15] 2.27 4.12 356 6.29 | 3.09 7.88% 9.27 26.29% 42,000
FlowfieldsCNN [BVS17] - 3.78 - 5.36 - 4.89% - 18.68% 23,000
DCFlow |[XRK17] - 3.54 - 5.12 - - - 14.86% 9,000
CNN-based:
Our FlowNet2 [IMS*17] 2.02 3.96 3.14 6.02 | 4.09 - 10.06 - 123
Our FlowNet2-ft [IMS*17] || (1.45) 4.16 (2.01) 5.74 | (1.28) - (2.30) 11.48% 123
SpyNet [RB17| 4.12 6.69 557 843 | 9.12 - - - 16
SpyNet-ft [RB17] (3.17) 6.64 (4.32) 8.36 | (4.13) 12.31% - 35.07% 16
PWC-Net [SYLK18| 2.55 - 3.93 - 4.14 - 10.35 33.67% 30
PWC-Net-ft [SYLK18] (2.02) 4.39 (2.08) 5.04 - 4.22% (2.16) 9.80% 30
‘With joint occl. est.:
MirrorFlow [HR17] - 3.32 - 6.07 - 4.38% - 10.29% 660, 000
S2D flow [LZS13] - 18.48 - 6.82 - - - - 2,280,000
Our FlowNet3-CSS 2.08 3.94 361 6.03 | 3.69 - 9.33 - 68
Our FlowNet3-CSS-ft (1.47) 435 (2.12) 5.67 | (1.19) 3.45% (1.79) 8.60% 68
Our FlowNet3-css 2.65 - 4.05 - 5.05 - 11.74 33

Table 9.8: Benchmark results for optical flow estimation. We report the
average endpoint error (AAE) for all benchmarks, except KITTI where Out-noc and
F1-all are used for the benchmark ranking on KITTI 2012 and 2015 respectively.
Out-noc shows the percentage of outliers with errors of more than 3px in non-occluded
regions, whereas F1-all shows the percentage in all regions. Entries in parentheses
denote methods that were fine-tuned on the evaluated dataset. Timings were taken
from an Nvidia GTX 1080Ti. On the Sintel dataset, the performance of our networks
is comparable to FlowNet2. When comparing to other methods with joint occlusion
estimation, we are faster by multiple orders of magnitude. On KITTIT 2012 and
2015, we obtain state-of-the-art results among all optical flow methods (two-frame,
non-stereo).

Application to Motion Segmentation

We apply the estimated occlusions to the motion segmentation framework by Keuper et
al. [KAB15|. Like [BM10], this approach computes long-term point trajectories based
on optical flow. For deciding when a trajectory ends, the method depends on reliable
occlusion estimates. These are commonly computed by using the post-hoc consistency
of forward and backward flow, which has been shown to perform badly Table 9.5.

We replace the post-hoc estimation with the occlusions from our FlowNet3-CSS
and from other methods. Table 9.9 (see next page) shows the clear improvements
obtained by the more reliable occlusion estimates on the common FBMS-59 motion
segmentation benchmark. In row #4, we show how adding our occlusions to flow
estimations of FlowNet2 can improve results. This shows that by only adding
occlusions, we recover 30 objects instead of 26. The last result from our joint
estimation of flow and occlusions further improves the findings. Besides the direct
quantitative and qualitative evaluation from the last sections, this shows the usefulness

(9.5.1)

9.6

(9.6.1)

9.6 Summary

Method N FBMS test set (30 sequences) .
Precision Recall F-Measure #Objects
Third-Order Multicut [Keul7] 87.77% 71.96% 79.08% 29/69
DeepFlow [WRHS13| 88.20% 69.39% 77.67% 26/69
Ours FlowNet2 86.73% 68.77% 76.71% 26/69
Ours FlowNet2 + our occ 85.67% 70.15% 77.14% 30/69
Ours FlowNet3-CSS 88.71% 73.60% 80.45% 31/69

Table 9.9: Motion segmentation results by using our occlusions. Re-
sults of motion segmentation from Keuper et al. [KAB15| on the FBMS-59 test
set [BM10, OMB14] (with a sampling density of 8px). The fourth row uses flows
from FlowNet2 [IMS*17] combined with our occlusions (from FlowNet3-CSS). The
improved results show that occlusions help the motion segmentation in general. The
last row shows the segmentation when using our joint estimation of flow and occlu-
sions, which performs best and also improves over the recent state of the art on sparse
motion segmentation by using higher order motion models [Keul7|. *5mm

of our occlusion estimates in a relevant application. Our final results even outperform
the recently proposed third-order motion segmentation with multicuts [Keul7|:

At the time of publication at ECCV 2018, using flow and occlusions from our
FlowNet3-CSS sets a new state of the art in motion segmentation.

Summary

This section has shown that:

e For CNNs, estimation of occlusions is very easy and joint estimation is not
required,

e cstimated occlusions for flow are state of the art and motion segmentation can
benefit significantly from these occlusions,

e estimated motion boundaries for flow are state of the art,

e the stack for disparity estimation achieves state of the art in disparity estimation
on KITTT 2015 and

e the stack for flow estimation achieves state of the art in flow estimation on
KITTI 2012 and 2015.

(States of the art were reported for the time of publication at ECCV 2018.)

86

APPROACHES

PROXIES /

GROUND-

87

Pseubo

TRUTH

Chapter 10

Extending Training with
Unlabeled Images

The concept of this chapter was developed together with Osama Makansi. The author
also contributed the hinge loss for an unconstrained assessment metric.

The networks that have been introduced so far have only been trained on synthetic
images, while they show surprisingly good results on other datasets, too. In contrast
to semantic tasks, such as object detection or semantic segmentation, the optical flow
estimation task seems to generalize very well. This is because learning the concept
of correspondence is different from recognition and does not depend so much on the
content of the images.

Still, knowledge about motion priors and correct apertures is very important. To this
end, it would be most interesting to extend the training to real-world data. However,
as explained in Chapter 5, optical flow is a secondary feature and cannot be directly
captured by a sensor. As a dense, sub-pixel-accurate annotation by hand is not
possible either, this raises the question if one can make use of existing methods that
compute optical flow.

Multiple strategies have been proposed on how to integrate real images into the
training procedure. These span from using the same unsupervised training loss for the
network, as is used in variational methods [AP16, MHR18]|, over multi-task learning
with an auxiliary task that allows for learning from unlabeled images [SZB17] to
training on pseudo ground truth obtained from running an (unsupervised) variational
method [ZLNH17].

Here we will follow the last approach [ZLNH17| and fine-tune our networks on pseudo
ground truth obtained from prozy methods. Note that our usual synthetic training
datasets do not contain any noise (as shown in Figure 10.1a), while using a proxy
introduces noise in form of errors in the optical flow (as shown in Figure 10.1b).
As long as this noise does not introduce a general bias, the network can act as a
regularizer and still converge to a good solution.

FusioNNET
AND
AUGMENTED-
FLowNET

10.1

ASSESSMENT
NETWORK

>

(a) The normal case is that
the network fits a function
to noise-free synthetic data.
The function is not fitted per-
fectly, as the model is lim-
ited and the correct regular-

(b) If ground truth is not
available, one can use several

existing methods as proxies.

These introduce noise from
errors. Note that proxies 1
and 3 have biases.

10.1 FusionNet

(¢) We filter the proxies with
our proposed FusionNet so as
to remove bias and to reduce
noise. We use the FusionNet
output to fine-tune FlowNet.
These networks outperform

ization parameters are un-
known.

the original FlowNets despite
the noisy data. The network
training acts as a regulariza-
tion.

Figure 10.1: Network acting as a regularizer on noisy data.

In order to minimize the noise and to make sure our pseudo ground truth does not
contain a bias, we construct the latter by using a diverse set of proxies and fusing
them with a network we call FusionNet. We then use the pseudo ground truth to
fine-tune existing networks that were originally trained on synthetic data (as shown
in Figure 10.1c). We call this fine-tuned network AugmentedFlowNet. Our results
show that these AugmentedFlowNets outperform original FlowNet and that using
the FusionNet with many proxies performs better than training on a single proxy
alone — and in some cases even better than the proxies used to generate the data. In
summary, we show that the network training acts as a regularization and that the
noise introduced due to a single incorrect proxy is not significant. Therefore, one can
in fact use the real data to improve the networks.

FusionNet

We assume that the various optical flow estimation methods have different strengths
and weaknesses. This does not outrule that these methods may also have many
difficulties in common which introduce noise to the training. However, as long as
there are differences, we aim at removing potential biases of particular methods and
want to choose the method that works best on a particular problem.

To this end, we propose an assessment network that predicts the errors of the optical
flow estimated by a set of existing methods (as shown in Figure 10.2; see next page)
and is trained on synthetic data with available ground-truth optical flow. At the
first glance, this training on synthetic images looks like we are back at square one.
However, the task of the assessment is different from the task of flow estimation
itself. First, we benefit from the information contained in the various input flow fields.

88

Chapter 10 FEztending Training with Unlabeled Images

10.1.1

(10.1.1)

89

B eee
. Image 2
Proxy 1
‘Warped . Flow
B &
— Weight
— Sharing
Proxy 2 —
5
:
=
-
g
=
g
£
£
2
Proxy 3 i = B

Warped

Figure 10.2: Overview of the FusionNet principle. Given the input images, the
optical flow is estimated with various existing methods (proxies). Each proxy’s optical
flow estimate is used to warp the second image. The two input images, the warped
image and the flow are fed into the proposed assessment network which is trained on
predicting the error of each flow field. Finally, the flow fields are merged by locally
choosing the flow vector with the minimum predicted error.

Second, the assessment task may generalize more easily to other domains than the
one of optical flow estimation, since it must only find ways to predict errors rather
than predicting the flow field itself.

The assessment network uses a typical encoder-decoder architecture with skip con-
nections; the architecture details are the same as in FlowNetS. It takes the two input
images into account in conjunction with the flow estimate and the second image
warped by that flow. The error maps predicted by the assessment network are used
to optimally combine the estimated flow fields. We refer to the complete setup shown
in Figure 10.2 as FusionNet. We investigate two different loss functions: an L; loss
and a hinge loss.

L, Loss

For training the assessment network with an L loss, we let the network directly
estimate the pixel-wise endpoint error (Equation 2.4.1) e by applying an L; loss to
the ground truth eg:

Li(e) = legr —el-

In principle, one could train a separate, specialized network for each input method to
be assessed. However, since we want to improve the generalization of the assessment
network, we use the same network for assessing all input flows and rather sample the
mini-batches from the different methods during training.

10.1.2

(10.1.2)

10.2

10.2 Augmented FlowNet

Labeled Unlabeled
Data Data

FusionNet

INGENPAEIY Augmented
FlowNet

Figure 10.3: Data domain transfer by using FusionNet. Using our FusionNet
to augment a FlowNet: FlowNet and FusionNet are trained on labeled data. Sub-
sequently, FusionNet is used to augment FlowNet with large amounts of unlabeled
data.

Hinge Loss

Directly applying an L loss on the error makes the network estimate the error for
each method. However, for the fusion, we only need to know the input methods with
the lowest error. That means that the L; loss potentially solves a harder problem
than necessary to reach the actual goal. A related problem to picking the input
with the smallest error is the one of designing a distance metric in order to match
patches. This metric only needs to reflect the ranking, e.g. “A is closer to B than
A is to C” [SJ04, WS09b]. Many feature-learning algorithms use this as a triplet
loss [XRK17, WSL*14, HA15b, SKP15, WL15]. With the same motivation, we use
the well-known multi-class hinge loss [MD11, DGI16]

Lirargin(€1, .- en) = Zmax(O, m+ej —e;),
7]

where j is the index of the method with the lowest error according to the ground truth,
and m is the minimum margin between the best estimate and the other estimates.
If the predicted best error corresponds to the true index 7, and all other errors are
larger than e; by at least m, this loss will be zero. Otherwise, each error that is
above the allowed margin will contribute to the loss. Since the network is allowed to
rescale the errors, we can set m = 1 without loss of generality. Note that the errors
predicted with this loss by the network do no longer correspond to the L; error but
may be rescaled. The rescaling factor may even be different for each pixel. Obviously,
the hinge loss implies joint training of the assessment network while giving all N
methods as input.

Augmented FlowNet

Given the FusionNet from the last section, we can apply it to any unlabeled data
to estimate high-quality optical low. However, running FusionNet is very costly,
since it requires running the various, partially very slow optical-flow-estimation proxy
methods. In order to have a fast optical flow estimation at test time, we use the

90

Chapter 10 FEztending Training with Unlabeled Images

10.3

10.3.1

ANIMATION
MOVIES

DriviNG

MOTION SEG-
MENTATION

10.3.2

PERFOR-
MANCE
COMPARED
TO PROXIES

91

optical flow fields estimated with FusionNet as proxy ground truth so as to fine-tune
a FlowNet, for instance to optimize it for a specific domain or to make it run better
on general real-world videos. The principle is illustrated in Figure 10.3 (see previous

page).

Experiments

Datasets

In order to train the initial FlowNet and AssessmentNetwork, we use the two synthetic
datasets FlyingChairs and FlyingThings3D from Chapter 5 and train with the
schedules Sj,ny and Sgye respectively. For the unsupervised fine-tuning, we use
various unlabeled datasets that we grouped into two domains: animation movies and
driving.

We collected several animation movies from the Blender project [Pro17] and used them
for unsupervised training. Such animation movies bear the option to derive ground-
truth optical flow, as shown in Butler et al. [BWSB12| and Mayer et al. [MIHT16],
but we did not use this option here and rather used just the unlabeled videos for
training. For the evaluation in this domain, we used the official Sintel benchmark
dataset [BWSB12|.

Driving scenes are a popular application domain for optical flow. For unsupervised
training, we took approximately 100k frames from the Frankfurt part of the publicly
available Cityscapes dataset [CORT16]. For the evaluation in this domain, we used
the two publicly available KITTI2012 [GLU12| and KITTI2015 [MG15| benchmark
datasets.

For an indirect evaluation of the optical flow on a motion segmentation task, we used
approximately 32k frames from the UdG-MS19 and UdG-MS20 datasets [MDSL17]
for unsupervised training. We evaluated the motion segmentation on the FBMS
benchmark dataset [OMB14].

FusionNet

We evaluated FusionNet with the following optical-flow-estimation techniques as input:
LDOF [BM11]|, DeepFlow [WRHS13|, EpicFlow [RWHS15|, FlowFields [BTS15| and
FlowNet2. There are some very recent methods with even better performances, such
as DCFlow [XRK17], PWC-Net [SYLK18| and MR-Flow [WSLB17], but their code
was not operational in time to include them for the experiments. A nice property
of FusionNet is that new methods can be integrated trivially at any time to further
improve results.

Table 10.1 compares FusionNet to the state of the art on the common benchmark
datasets. FusionNet consistently outperforms each of the techniques that have been
provided as input, which demonstrates that the assessment network is able to locally
select the best optical flow vectors. As a consequence, this brings it close to the
most recent state of the art and would most likely outperform it if these methods
were also included for selection. Table 10.1 also reports the results when selecting

10.3.3

USE oOF
FusioNNET

DowmaINs

10.8 Ezperiments

Animation Domain Driving Domain
Method Sintel clean | Sintel final KITTI 2012 KITTI 2015
AEE AEE AEE Fl-noc | AEE Fl-all
train test | train test train test test train test
LDOF [BM11] 4.65 7.56 | 6.16 9.12 || 10.26 124 21.93% | 17.71 -
2 | DeepFlow|WRHS13] || 2.66 538 | 4.02 7.21 5.78 5.8 7.22% | 13.14 28.48%
2. | EpicFlow|[RWHS15] 2.27 411 | 357 6.28 3.52 3.8 7.88% 9.23 26.29%
= FlowNet2[IMS™17] 2.02 396 | 3.62 6.02 4.09 — — 10.06 -
FlowFields[BTS15] 1.86 3.75 | 3.40 5.81 3.08 3.5 5.77% 9.26 -
- DCFlow[XRK17] — 3.54 — 5.12 - - - - 14.86%
‘:Eg PWC-Net[SYLK18] 2.55 439 | 3.93 5.04 4.14 1.7 4.22% | 10.35 9.60%
MR-Flow|WSLB17| 1.83 2.53 | 3.59 5.38 - — — — 12.19%
Z | FusionNet-L 1.59 - 3.10 — 3.11 — - 8.13 —
& | FusionNet-Hinge 1.58 3.20 | 3.18 5.50 2.97 36 550% 8.18 21.44%
Oracle 0.96 — 1.83 — 2.04 — — 5.77 —

Table 10.1: Comparison of FusionNet to the state of the art. The upper
section of the table corresponds to the input methods used for FusionNet. FusionNet
performs better than any of the input methods. The “Oracle” fusion refers to a fusion
based on the ground-truth error.

the flow vectors based on the ground-truth error (“Oracle”), indicating the limit that
FusionNet could achieve with the respective optical flow fields given as input.

Augmented FlowNet

While FusionNet yields excellent optical flow that combines the best from all available
methods, it requires 84 seconds per frame. In contrast, FlowNet2 runs at 8 frames
per second!.

Table 10.2 (see next page) first shows the influence of the choice of the proxy ground
truth when fine-tuning a basic FlowNetC. Augmenting the FlowNet with an optical
flow field that is superior to the baseline improves results, whereas inferior flow fields
can decrease the performance. When using just a single proxy method, there arises
the dilemma of which method to choose. As one would expect, feeding a random
mixture of samples from various methods during fine-tuning (Rand. Mix) does not
yield the best of all involved methods but approximately their average. In contrast,
the use of FusionNet resolves the dilemma.

We also distinguish between augmentation for a specific domain and generic augmen-
tation. In the first case, we augment the FlowNet only on data from the respective
domain, i.e. animation movies in case of Sintel and driving videos in case of KITTI;
in the second case, data from both domains is used for fine-tuning.

Table 10.2 shows that domain-specific augmentation improves results considerably on
KITTI, which is a very special scenario. The error is almost cut by half. However, the
generic augmentation is not much worse either, as it also benefits from the training
data from the special domain, even though it is now mixed with data from another

! FlowNet2 runtime is reported on an Nvidia GTX1080 GPU, while the traditional methods run
on the CPU.

92

Chapter 10 FEztending Training with Unlabeled Images

UNFrLow
COMPARISION

93

Animation Domain || Driving Domain
Sintel KITTI
Method clean ‘ final 2012 ‘ 2015
Baseline 3.07 [446 6.66 [12.47
AugmentedFlowNetD-FlowNet2 2.79 4.05 4.26 9.60
AugmentedFlowNetD-FlowFields 2.97 4.18 3.62 8.01
AugmentedFlowNetD-EpicFlow 3.09 4.21 3.70 8.11
g | AugmentedFlowNetD-DeepFlow 3.34 4.45 4.90 12.11
Qo AugmentedFlowNetD-LDOF 3.66 4.69 7.93 14.93
AugmentedFlowNetD-Rand. Mix 3.07 4.20 4.14 9.61
AugmentedFlowNetD-FusionNet (L1) 2.80 3.97 3.69 8.17
AugmentedFlowNetD-FusionNet (Hinge) || 2.75 3.97 3.52 7.65
g AugmentedFlowNetG-FusionNet (L1) 2.84 4.06 3.91 8.34
O | AugmentedFlowNetG-FusionNet (Hinge) || 2.78 4.02 3.77 8.01

Table 10.2: Influence of the proxy ground truth on the augmented
FlowNetC. Average endpoint errors are reported on the training sets of Sintel
and KITTI. Augmentation with a single proxy can improve results, but it is not
obvious which method to choose. Using multiple methods to generate the proxy
ground truth (FusionNet) yields consistent improvements across all benchmarks. The
upper part of the table shows experiments which are trained on domain-specific data
(denoted “AugmentedFlowNetD”), while the bottom part shows experiments where
the training data came from multiple domains to yield a generic network (denoted
“AugmentedFlowNetG”).

domain. Obviously, the network can automatically figure out at test time from which
domain the input is from and can apply the appropriate priors from that domain.

Table 10.3 extends the augmentation to a stacked FlowNet and compares it to
UnFlow [MHR18|. UnFlow uses an unsupervised loss and can thus be specialized
conveniently to any domain. The table shows results for UnFlow trained on CityScapes
or the unlabeled data from KITTI, outperforming the supervised baseline which
was trained on synthetic data outside this domain. For a better comparison to our
strategy, we also report results for a semi-supervised version of UnFlow, i.e., it is
initialized with a FlowNet trained on synthetic data before the unsupervised training
starts.

Results show that the domain adaptation with the augmented FlowNet is clearly
superior to the one of UnFlow?. As we already observed in Table 10.2, there is no
significant difference between domain-specific training and training on a joint set of
domains. This is also true for the stacked network.

2 UnFlow does not require any supervision, which makes it biologically more plausible. From
the engineering perspective, however, this is irrelevant.

10.4

10.5

10.4 Benchmark Results

Animation Domain || Driving Domain
Sintel KITTI
Method clean L final 20121 2015
Baseline 307 446 6.66 | 12.47
UnFlow-C-CityScapes [MHR18| || — — 5.08 | 10.78
. | UnFlow-C-ours 4.22 5.12 5.01 11.07
% UnFlow-C-KITTIraw [MHR18] — — 3.78 8.80
A1 UnFlow-CS [MHRI18] - - 330 | 8.14
UnFlow-CSS [MHRIS| - — 3.29 8.10
. | AugmentedFlowNetD-C 2.75 3.97 3.52 7.65
% AugmentedFlowNetD-CS 2.20 3.45 2.35 5.84
| AugmentedFlowNetD-CSS 2.09 3.34 2.05| 5.35
.| AugmentedFlowNetG-C 2.78 4.02 3.77 8.01
g AugmentedFlowNetG-CS 2.21 3.49 2.44 5.90
AugmentedFlowNetG-CSS 2.10 3.38 2.17 5.18

Table 10.3: Comparison of augmented FlowNet stacks to UnFlow.

Augmented-FlowNetD-C and UnFlow-C-ours are trained on the same domain-specific
data and are initialized with the same model (Baseline). The results show that the
purpose of domain adaptation is better achieved with the augmentation based on
FusionNet than with the unsupervised loss of UnFlow. The results for the FlowNet
augmented with data from both domains even show that it is not necessary to train
separate networks for each domain, but that a generic network augmented on both
domains is equally good.

Benchmark Results

Table 10.4 (see next page) compares the stacked augmented FlowNet to the state
of the art at time of publication on arXiv (Mon, 20 Aug 2018). On the KITTI
benchmarks, the augmented FlowNet sets a new state of the art after being fine-tuned
with the ground truth from the KITTI training set, too. But also the generic version,
which has not been fine-tuned with ground truth data, yields very good results. The
direct comparison to FlowNet2 quantifies the improvement on stacked networks due
to the augmentation.

Interestingly, the stacked augmented FlowNet often even outperforms the FusionNet
proxy. This is due to the fine-tuning with ground truth in case of the domain-specific
network. Sometimes, the generic network is also better than FusionNet. This proves
the ability of the network to act as a regularizer.

Results on Motion Segmentation

Finally, we also evaluated the augmented FlowNet in an application scenario. We aug-
mented the FlowNet on data from UdG-MS19 as well as UdG-MS20 [MDSL17] and fed
its optical flow into the motion segmentation approach by Keuper et al. [KAB15|. The
motion segmentation performance was evaluated on the FBMS benchmark [OMB14].

94

Chapter 10 FEztending Training with Unlabeled Images

Table 10.5 (see next page) shows that the adaptation to real images clearly helps a
FlowNetC improve motion segmentation results. For the stacked network, our CS
pipeline performs slightly better than the complete FlowNet2 stack.

10.6 Summary

This chapter has shown that:

e Network training acts as regularization and can lead to better results than the
supplied pseudo ground truth,

(10.6.1) e large amounts of unlabeled real-world data can be used to significantly improve
FlowNet, and

e the presented approach of using FusionNet outperforms the state-of-the-art
unsupervised approach UnFlow and achieves a new state of the art on both
KITTTI datasets.

95

10.6 Summary

Animation Domain Driving Domain
Method Sintel clean | Sintel final KITTT 2012 KITTT 2015
AEE AEE AEE Fl-noc | AEE Fl-all
train test | train test train test test train test
.= | DSTFlow [RYN*17] 6.93 520 | 7.82 592 1043 124 - 16.79 39.00%
i; GAN-OpticalFlow|LHY17b] 330 6.277| 468 7317 || 716 6.8 - 16.02 31.01%
= | Hybrid-OpticalFlow-NextFrame[SZB17| || — — — — 5.31 9.2 39.12% | 10.19 —
= | UnFlow-CSS[MHR18] - — | 791 1022 329 170 428%'| 810 11.11%'
2. | Our FlowNet2 [IMS*17] 2.02 396 | 3.62 5747 | 355 1.8 - 8.94 11.48%
& | PWC-Net[SYLK18]| 2.55 3.867|3.93 5.04f| 414 177 4.22%' | 1035 9.60%]
DCFlow|[XRK17] — 354 | — 512 - - - — 1486%
MR-Flow[WSLB17| 1.83 2.63 | 3.59 5.38 — — - - 12.19%
. | Our AugmentedFlowNetD-CSS 2.09 4.227[334 5637 2.05 1.57 3.97% | 535 8.57%
= Our AugmentedFlowNetG-CSS 2.10 3.69 | 3.38 5.20 2.17 2.7 7.04% 5.18 20.09%
© ‘ Our FusionNet-Hinge 1.58 3.20 |3.18 5.50 2.97 3.6 5.50% 8.18 21.44%

Table 10.4: Benchmark results for FusionNet and AugmentedFlowNet. We
compare to state-of-the-art methods at time of publication on arXiv (Mon, 20 Aug
2018). Numbers marked with T have been obtained after fine-tuning on the training
set of the respective benchmark. On the KITTI benchmarks, we clearly extend
the state of the art. Thanks to additional fine-tuning with ground-truth data, the
augmented network even performs better than the FusionNet proxy; but also the
generic version, which has only been fine-tuned on the FusionNet proxy, gets close to
FusionNet and sometimes even outperforms it.

Method F1 MeasurelExtracted Objects
FlowNetC (baseline) 60.52% 10/69
AugmentedFlowNetD-C 65.29% 13/69
FlowNet2 [IMS™17] (stacked baseline) 76.72% 26/69
AugmentedFlowNetD-CS 77.09% 28/69

Table 10.5: AugmentedFlowNet motion segmentation results. Results are
taken from the FBMS test set [OMB14]. We fed the optical flow from the listed
methods into the motion segmentation approach by Keuper et al. [KAB15|. The
augmentation on real data clearly improved over the FlowNetC baseline. For the
stacked network, our CS pipeline performs slightly better than the complete FlowNet2
stack.

96

BrLack-Box
NATURE

RELIABILITY

FOR APPLICA-

97

TIONS

Chapter 11

Uncertainty Estimation

The contents of this chapter come from the joint work with Ozgiin Cigek and Silvio
Galesso, published in [ICGT 18]. The multi-hypotheses network named FlowNetH is a
sole contribution by the author.

A valid critique of learning-based approaches is their black-box nature: since all
parts of the problem are learned from data, there is no strict understanding of how
the problem is solved by the network. Although the results from Chapters 8, 9
and 10 show that the networks generalize well across various datasets and also yield
good application performances, there is no guarantee that they will also work in
different scenarios that contain unknown challenges or yield spurious results for badly
conditioned input data.

In real-world scenarios, such as control of an autonomously driving car, an erroneous
decision can be fatal; thus, it is not possible to deploy such a system without
information about how reliable the underlying estimates are. We should expect an
additional estimate of the network’s own uncertainty, such that the network can
highlight hard cases where it cannot reliably estimate the optical flow or where it must
decide between multiple probable hypotheses. An example is shown in Figure 11.1:

(b) Flow prediction (¢) Uncertainty prediction

Figure 11.1: Example of joint estimation of optical flow and its uncertainty.
The estimated uncertainty (visualized as a heatmap) marks the optical flow in the
shadow of the car as unreliable (pointed out by the red arrow), contrary to the car
itself, which is estimated with higher certainty. Marked as most reliable is the optical
flow for the static background.

11 Uncertainty Estimation

+
_i_Point

Estimate

(a) Given are two images. The correspondence for the location marked in the first image
is to be determined in the second image. Common approaches provide only a single point
estimate.

General
Distribution

(b) The most general form would be to estimate the complete distribution over the second
image.

(c) A simplification is to estimate parametric distributions, such as Gaussian or Laplace.

Figure 11.2: Probabilistic formulation of correspondence.

In the case of the transparent shadow, two apparent motions actually exist: the
motion of the shadow and the motion of the scene. Distinguishing them requires
semantic knowledge and special training data. Since the network was only trained on
FlyingChairs and FlyingThings3D, it does not have the capability of distinguishing
them and chooses to output the shadows motion. However, it can also recognize that

the case is ambiguous and inform about its own uncertainty, as shown in Figure 11.1c.

Deep networks in computer vision typically yield only their single preferred prediction
rather than the parameters of a distribution (as shown in Figure 11.2a). Even among
traditional methods, only one method that performs among the state-of-the-art
approaches for optical flow provides uncertainty estimates [WKR17|. In the following,
we investigate how CNNs can estimate their local uncertainty about the correctness
of their prediction for the regression setting, which is vital information when building
decisions on top of the estimations and crucial for use in any real application. For
the first time, we compare several strategies and techniques to estimate uncertainty
in a large-scale computer vision task like optical flow estimation and introduce a
multi-hypothesis approach.

98

Chapter 11 Uncertainty Estimation

11.1

PoinT
ESTIMATES

PROBABILISTIC
ForMuLA-
TION

(11.1.1)

UNCERTAINTY
ESTIMATE

(11.1.2)

(11.1.3)

99

Formulation of Uncertainty

Although the illustration from Figure 11.1c (see last page) is intuitive, a formal
definition of uncertainty is not straightforward. The commonly accepted requirement
is that an uncertainty measure must rank image pixels similar to ground-truth errors
(see Section 3.6 and Figure 3.11).

While many approaches try to infer confidence measures from model parameters (Sec-
tion 3.6) and others try to predict the ground-truth error or its negative exponential
directly [UZU™ 17|, here, we take the most general approach and predict probability
distributions. Our work extends the work by Kendall and Gal [KG17|.

Assume we have a dataset D = {(x0,¥5), ..., (Xn,y%)} which is generated by
sampling from a joint distribution p(x,y). In CNNs, it is normally assumed that
there is a unique mapping from x to y by a function fy(x) which is parametrized by
weights w that are optimized according to a given loss function on a training dataset
D. In the case of optical flow, we denote the trained network as a mapping from
the input images x = (I, I2) to the output optical flow y = (u,v) as y = fw(I1,I2),
where u, v are the x- and y-components of the flow field. This means that for each
location in the first image, the predicted correspondence is a point estimate, as
illustrated in Figure 11.2a (see previous page).

If one now allows uncertainty, this implies that more or less likely alternative solutions
must also exit. The result is a general probability distribution over all possible
correspondence locations in the second image p(y|x,D). An example is illustrated in
Figure 11.2b (see previous page).

The uncertainty is represented by how wide the distribution is spread or, in other
words, by the distribution’s entropy.

In order to estimate the general uncertainty, the actual shape of the distribution
is irrelevant. For this reason, we approximate the distribution by a parametric
distribution, namely the Laplace distribution (as shown in Figure 11.2¢; see previous
page). We choose Laplace because its negative logarithm corresponds most closely
to an L distance, while a Gaussian would most closely correspond the the squared
distance. This makes the Laplace distribution more robust to outliers and actually
puts it closer to the endpoint error. The univariate Laplace distribution has two
parameters a and b and is defined as:

1 _lz—a
L(x|a,b) = A
The variance of this distribution is 02 = 2b and serves as a measure for uncertainty.
For optical flow, it is common to treat x- and y-components as independent [WKR17],

which makes the distribution axis aligned. We also follow this approach:
L(w, V|ay, @y, by, by) = L(u|ay, by) - L(v]ay, by).

In general, one could also revert to an isotropic distribution. Because we use an
axis-aligned distribution, we obtain two variances for x- and y-direction and use the
entropy to obtain a single scalar for the uncertainty.

11.2

EPISTEMIC
UNCER-
TAINTY

ALEATORIC
UNCER-
TAINTY

AMBIGUITIES

11.2 Sources of Uncertainty

Sources of Uncertainty

Kendall and Gal |[KG17| distinguish between two different sources of uncertainties:

Epistemic Uncertainty represents uncertainty about the correct model parameters
w, given the model f. This uncertainty can be explained away with an infinite
amount of training data. Since this is not possible in practice, epistemic uncertainty
naturally leads to modeling distributions over likely model parameters p(w|D, f)
which resemble the concept of Bayesian Neural Networks (BNNs). The uncertainty
of the output values then has to be determined by marginalization (Equation 11.3.2)
over the weights.

The aleatoric uncertainty p(y|x) is a function of the input data x independent of any
model as well as training data and accounts for the data’s intrinsic characteristics,
such as noise (e.g. sensor noise) or disturbed image areas (e.g. ambiguities, textureless
regions, shadows, transparent objects and motion blur). For aleatoric uncertainty,
multiple solutions are possible and the given input information is not sufficient to
narrow them down further. However, it is still possible to estimate the uncertainty
itself as a function of the input data. This uncertainty estimates the variance of the
output y, given very similar input cases x. Note that according to [KG17| it does
not depend on the training data.

One should note that a separation of the two uncertainties can be very unclear. For
example, consider two poles at the side of a road. If they look identical, there is no
“guarantee” that they are not spuriously interchanged in the second image. This leads
to aleatoric uncertainty. However, the uncertainty can significantly be reduced by the
prior knowledge that the poles are attached to the road and do not move. This prior
knowledge comes from the model and actually compensates the aleatoric uncertainty
(but the definition of aleatoric uncertainty is just that it cannot be compensated by
more data). In this case, one cannot draw a line between the two uncertainties.

If we supply only synthetic ground truth, the ground truth is noise-free (up to color
interpolation due to sub-pixel positions). The only source of aleatoric uncertainty
would arise due to ambiguities or occlusions. However, the FlyingChairs and Fly-
ingThings3D datasets do not contain completely homogeneous areas and do not
present ambiguous cases for a human. Up to the occlusions, this can be seen as an
argument that only epistemic uncertainty is relevant.

Instead, from our results, we observe that a single network can also learn to explain
that it cannot solve certain cases. Reasons might be that for this case, too few training
samples were available and it learned to treat them as outliers, or because the model
f is not powerful enough (both result in a bias/variance trade-off). As an example,
let’s say we define a model f that can estimate a maximum displacement of 200 pixels.
If the data contains displacements up to 1,000 pixels, a single network trained with
the distribution output and loss attenuation that will be introduced in Section 11.3.2
will learn that these cases are outliers. Note that in reality, another model could
solve them and that they do not induce aleatoric uncertainty. The consequence is
that the single model can predict epistemic uncertainty (which again contradicts the
definition of requiring a distribution). For these reasons, the separation of the two
uncertainties is to be taken with much caution.

100

Chapter 11 Uncertainty Estimation

UNCERTAINTY
DUE TO f

EMPIRICAL
AND
PREDICTIVE

(11.2.1)

(11.2.2)

11.3

(11.3.1)

101

In fact, we will later see that modeling only uncertainty depending exclusively on
the input x is sufficient and that these networks also predict epistemic uncertainty
well (although they do contain any distributions over weights). What is missing in
the definition of the two uncertainties are inaccuracies that neither come from the
weights w nor the input data x, but actually from the model definition f (where f
includes the training procedure). This uncertainty arises due to stochastic gradient
descent as well as the limited and hand-crafted model selection of f and its capacity,
which lead to models that are not fully converged or simply have limited accuracy
in general. The loss functions introduced by Kendall and Gal [KG17] account this
uncertainty as aleatoric, although from a conceptual point of view one would consider
it epistemic since it relates to the model f.

To avoid the confusion, in this work, we will therefore not use the terms epistemic
and aleatoric but rather introduce the terms empirical and predictive:

Empirical uncertainty comes from uncertainty about the model parameters
p(w|D, f), given the model f of limited capacity and a limited training dataset
D. Furthermore, we compute the empirical uncertainty only from a small set of sam-
ples w; from p(w|D, f). These are selected empirically or by coarse approximations
of BNNSs, as described in Section 11.3. The empirical uncertainty is an approximation
of the epistemic uncertainty.

Predictive uncertainty is uncertainty that arises from the input data x and the
hand-crafted model f as well as its limitations. This uncertainty can be estimated by
a single network, but in contrast to aleatoric uncertainty, it can also inform about
the own model’s limitations and those that arise from the convergence process.

Bayesian Neural Networks and Frequentist
Approximations

Bayesian Neural Networks (BNNs) replace the the deterministic network’s weight pa-
rameters w with a distribution p(w|D, f), where f represents the network architecture
and D a finite and fixed training set.

Here, we will denote a network architecture as a model and the weights as the model
parameters or the paramter set. Note that a BNN does not provide a distribution
over all possible models but only over all possible parameter sets. In most cases, it is
assumed that the hand-crafted model f is general enough, such that the resulting
BNN can be seen as a substitute for all possible models, but this is not true per
se. Instead, it is important to note that a BNN only provides a distribution over
implementations of the model engineered by a human, which introduces a bias. In
the following, if a distribution depends on w, it implicitly also depends on f and we
will omit the dependency on f for brevity.

Bayesian neural networks have been shown to obtain well-calibrated uncertainty
estimates while maintaining the properties of standard neural networks [Nea96,
Mac92]. While BNNs are easy to formulate, they are difficult to perform inference

(11.3.2)

MCMC

VARIATIONAL
INFERENCE

DroprpouT

Boor-
STRAPPING

11.3 Bayesian Neural Networks and Frequentist Approximations

in [KG17]. For the inference, one needs to marginalize over all possible sets of weights:
Py |xD.f) = [by | xwlplw | D)o,

This is not possible in practice so approximations need to be made. Early work [Nea96|
mostly used Markov Chain Monte Carlo (MCMC) methods to sample networks from
the distribution of the weights, where some, for instance Hamiltonian Monte Carlo,

can make use of the gradient information provided by the backpropagation algorithm.

More recent methods generalize traditional gradient-based MCMC methods to the
stochastic mini-batch setting, where only noisy estimates of the true gradient are
available [CFG14, WT11]. However, even these recent MCMC methods do not scale
well to high-dimensional spaces, and since contemporary encoder-decoder networks
like FlowNet have millions of weights, they do not apply in this setting.

Instead of sampling, variational inference methods try to approximate the distribution
of the weights by a more tractable distribution ¢ (w), parameterized by 6 [KG17,
Grall, BCKW15, GG15]|. This replaces the intractable problem of averaging over all
weights in the BNN with an optimization task, where one seeks to optimize over the
parameters of the simple distribution instead. A drawback is that approximating the
true distribution by the simple one usually requires and independence assumption of
the model parameters, which significantly affects the prediction quality. Even though
they usually scale much better with the number of datapoints and weights than their
MCMC counterparts, they have been applied only to much smaller networks [HA15a,
BCKW15| than in the present work.

Dropout variational inference is a practical approach for approximate inference in
large and complex models [GG15]|. This inference is done by training a model with
dropout before every weight layer and also by performing dropout at test time in order
to sample from the approximate posterior (stochastic forward passes referred to as
Monte Carlo dropout) [GG16a, KG17]. Dropout can be interpreted as a variational
Bayesian approximation, where the approximating distribution g;(w) is a mixture of
two Gaussians with small variances and the mean of one of the Gaussians is fixed at
0 [KG17]. We extend upon this work, but show that the dropout strategy is not the
best solution and other strategies yield better results.

Obtaining distributions over network weights or outputs is also possible by frequentist
methods, which tend to be much simpler to implement than Bayesian approaches
but do not follow a formal framework. One such method is bootstrapping [Bis06]
where M different models are trained with different initialization and on M different
bootstrapped subsets of the training data. The expectation is that this will provide
independent samples from the weight distribution. The approach is easy to implement
and scales nicely to high-dimensional spaces, since it only requires point estimates of
the weights. While bootstrapping does not ensure diversity of the models and in the
worst case can lead to M identical models, Lakshminarayanan et al. [LPB16| argued
that ensemble model averaging can be seen as dropout averaging. They trained
individual networks with random initialization and random data shuffling where
each network predicts a mean and a variance. During test time, they combined the
individual model predictions to account for the empirical uncertainty of the network.

102

Chapter 11 Uncertainty Estimation

(a) Dropout: Dropout randomly zeros out activations and is applied during training and
testing. This can also be seen as generating an ensemble during test time on-the-fly.

Training

alalalal ol ol ol o

o Jnt It)5t Pt 5ot It e

(b) Bootstrapping: An ensemble is created by training different instances completely
separately. The instances are equipped with different initializations and use different data
subsets.

Training
Learning Rate
/

v
Mrions
>

alalal ol ol ol ol o)

Testing

(¢) SGDR: Ensemble members are obtained as snapshots. The training is repeatedly
restarted, aiming at visiting different local minima during the convergence process.

Figure 11.3: Overview of ensemble generation approaches.

SGDR We also consider so-called snapshot ensembles [HLP17] in our experiments. This
approach follows the seemingly contradictory goal of learning an ensemble of multiple
neural networks without incurring any additional training costs. The idea is to use
the nonconvex nature of neural networks and the ability of SGD to converge to and
escape from local minima. To this extent, the learning rate is repeatedly annealed
and raised again (referred to as restarts). This procedure is called Stochastic Gradient
Descent with warm Restarts (SGDR) [LH17|.

In summary, existing work provides three different methods to obtain different sets
of weights for CNNs: 1.) sampling via dropout, 2.) bootstrapping and 3.) SGDR.
While the first one follows the Bayesian framework, the other two are frequentist
methods. An overview is provided in Figure 11.3.

103

11.3.1

(11.3.3)

(11.3.4)

11.3.2

11.3 Bayesian Neural Networks and Frequentist Approximations

Pred. Mean
Pred. Mean
Pred. Mean .
:
Pred. Mean Pred. Mean

() (d) (e)

Figure 11.4: Networks for uncertainty prediction. (a) FlowNetC trained with
EPE (no uncertainty). (b) Same network as (a), where an ensemble is built by using
dropout, bootstrapping or SGDR. (c¢) FlowNetC trained with negative-log-likelihood
to predict mean and variance. (d) Same network as (c), where an ensemble is built
by using dropout, bootstrapping or SGDR. (e) FlowNetH trained to predict multiple
hypotheses with variances, which are merged to a single distributional output.

Empirical Uncertainty Estimation

Modelling empirical uncertainty implies a transition from a single network (Fig-
ure 11.4a) to an ensemble (Figure 11.4b) by using M different model parameter
sets, such that the mean and the variance of the distribution p(y|x, D, f) can be
approximated with the empirical mean and the variance of the individual networks’s
predictions. Let fw,(x) denote the model f with parameter set w; of an ensemble
of M networks with outputs uw, and vy, respectively. The different model parame-
terizations w; can be generated with the approaches from the last section (dropout,
bootstrapping and SGDR) and reflect samples from the distribution of all possible
model parameterizations p(w|D). We can then compute the empirical mean and the
variance for the u-component of the optical flow by:

M
1
N‘u == M ‘ uwi(x),
=1
1 M
oy = Mi_l(uwl(X)—uu)Q,

and accordingly for the v-component.

Predictive Uncertainty Estimation

For predictive uncertainty estimation, we need a single model generating a prediction
of y and its associated uncertainty from the input data x. Formally, we extend the
model f to a model ¢ to output the parameters 8 of a parametric distribution (in
our case, mean and variance of a Laplace distribution as motivated by Section 11.1)
that should approximate p(y|x, D) [NW94|. Note that this models a distribution over
network outputs instead of weights. Such networks can be optimized by maximizing

104

Chapter 11 Uncertainty Estimation

(11.3.5)

(11.3.6)

(11.3.7)

(11.3.8)

(11.3.9)

Loss ATTEN-
UATION

TRADE-OFF

11.3.3

(11.3.10)

(11.3.11)

105

their log-likelihood:

N
. 1
w' = argmax [logp(D | w, 0)] = argmax | - 3" logp(y, | dw(x:))
=1

and the predictive distribution for an input x is then defined as:
p(y [x,w,0) =p(y | pw(x)).

By using the Laplace distribution from Equation 11.1.2, we obtain a version of
FlowNet with outputs a,, ay, by, by, by minimizing the negative log-likelihood of
Eq. 11.1.3:

—log(L(u|ay,by) - L(v]|ay,by)) = —log(L(u|ay,by)) — log(L(v]ay,by)))

|u — ay| |v — ay|
= — +logb
TR
This case corresponds to a single FlowNetC predicting flow and predictive uncertainty
as illustrated in Figure 11.4c (see page 104). Let us consider the u-component:

+ log b,.

L1 distance

|u — ay|

—log(L(u|ay,by)) = - + logb, .
\’,u_/ trade-off

attenuation

The residual error term |u — a,| corresponds to an L loss, i.e., the loss function will
enforce means a, that are close to the ground-truth u. Furthermore, the residual
term is divided by the scale parameter b, (corresponding to the variance o2 = 2b?).
If the network is unable to solve for low error terms (either due to noise in x or due
to limitations of f), the network has the option to output large values for b,. This is
called loss attenuation. According to [KG17|, this acts similar to a robust regression
function.

Finally, the logarithm term acts as a trade-off and discourages the model to explain
data with noise. This term makes sure that the L; distance is actually minimized and
large b, are only predicted when really necessary. It is important to note that the
trade-off between a, and b, is not arbitrarily chosen but comes from the formulation
of the loss with a Laplace distribution and thus also enforces the errors of the model
to follow this distribution.

Bayesian Uncertainty Estimation

We can now use the network with the probabilistic output from the last section and
insert it into Equation 11.3.2 to obtain a Bayesian formulation:

Py | x.D.¢) = / p(y | %, w)p(w | D)dw

— / P(Y | w (%))p(w | D)dw.

(11.3.12)

(11.3.13)

(11.3.14)

COMBINED
PREDICTIVE /
EMPIRICAL

11.4

HYPOTHESES
EsTiMATION

WINNER-
TAKES-ALL

11.4 Predicting Multiple Hypotheses within a Single Network

This integral cannot be computed in closed form, but by sampling M networks
w; ~ p(w|D) from the posterior distribution and using a Monte-Carlo approxima-
tion [Nea96|, we can approximate it as:

M

p(y [%,D,6) = > p(y | dw,(x)).

=1

Note that this represents M different networks and therefore leads to an ensemble
that effectively combines the empirical and predictive uncertainty estimation. If
we assume that the single network’s output 8; = ¢, (x) consists of a mean and a
variance 6; = (O'iz, wi), we can use the law of total variance to compute mean and
variance of the mixture distribution from Equation 11.3.12 [KG17]:

1 M
Hu = M Z Hu,i,
=1
1 M
0121 = M Z; ((Nu,i - l’/u)2 + U2u,i>
1=

Equations for the v-component are analogous. We now have combined the approaches
from Section 11.3.1 and Section 11.3.2 as illustrated in Figure 11.4d (see page 104), i.e.,
we now have combined the predictive and the empirical approach. This was initially
proposed by Kendall and Gal [KG17] by using dropout variational inference. In this
work, we apply the approach to optical flow and generate the ensemble members with
the three approaches dropout, bootstrapping and SGDR. We compare all approaches
in Section 11.5.

Predicting Multiple Hypotheses within a Single Network

The consequence of approximating BNNs is that multiple network forward passes
with different sets of weights have to be performed (Figures 11.4b and 11.4d). This
results in a drawback due to highly increased computational costs at runtime.

In this section, we explain how to apply the Winner-Takes-All (WTA) loss in order
to make multiple predictions within a single network [GRBK12, LPC*16, CK17,
RLD™17|, which can be seen as an ensemble within one network. We call the outputs
of this network hypotheses. The WTA loss makes the hypotheses more diverse and
leads to capturing more different solutions. However, because of the WTA loss, these
solutions are not sampled from the distribution of the solution space anymore, and
it is not possible to obtain the best solution by simply averaging, as has been done
for the ensembles presented in the last section. We propose to use a second network
to perform the merging task of the hypotheses to a single prediction and variance,
as depicted in Figure 11.4e (see page 104). The second network is simply trained to
regress the hypotheses to the optical flow ground truth.

Since a ground truth is available only for the single true solution, the question arises
how to train a network in order to predict multiple hypotheses and how to ensure that
each hypothesis encompasses meaningful information. To this end, we use a loss that

106

Chapter 11 Uncertainty Estimation

(11.4.1)

(11.4.2)

(11.4.3)

ENCOURAGING

DIVERSITY

COLLAPSING

107

11.5

punishes only the best among the network output hypotheses y1,...,yyn [GRBK12|.
Let the loss between a predicted flow vector y(i,j) and its ground truth y®'(i, j) at
pixels 4, j be defined by a loss functon [. We minimize:

Lhyp = Z l(ybestiidx(i,j% ygt(z’])) + A(Za.]) ’

2

where best idx(i, j) selects the best hypothesis per pixel according to the ground
truth:
best idx(i, j) = argmin [EPE(yk(i,j), ygt(z’,j))] .
k

A = A, + A, encourages similar solutions to be in the same hypothesis k via one-sided
differences, e.g. for the u component:

Auig) = 3 Jykalisg) — yeuli—1,5)|+
k;i>1;5
7 ki d) = yralis g — 1) -

ki j>1

For [, we either use the endpoint error from Eq. 2.4.1 or the negative log-likelihood
from Eq. 11.3.7. In the latter case, each hypothesis is combined with an uncertainty
estimation, and [also operates on a variance o. Equations 11.4.2 and 11.4.3 remain
unaffected. For the best index selection, we stick to the EPE since this is the main
optimization goal.

In order to minimize Ly, the network must make a prediction close to the ground
truth in at least one of the hypotheses. In locations where multiple solutions exist
and the network cannot decide for one of them, it will predict several different likely
solutions so as to increase the chance that the true solution is among these predictions.
Consequently, the network will favor making diverse hypotheses in cases of uncertainty.
In Tables 3 and 4 of the supplemental material of [[(GT 18], we provide visualizations
of such hypotheses.

In principle, Ly, could collapse to using only one of the hypotheses’ outputs. In
this case, the other hypotheses would have very large error and would never be
selected for backpropagation. However, due to the variability in the data and the
stochasticity in training, such collapsing is very unlikely. We never observed that
one of the hypotheses was not used by the network, and for the oracle merging, we
observed that all hypotheses contribute more or less equally. We show this diversity
in our experiments.

Experiments

In order to evaluate the different strategies for uncertainty estimation while keeping
the computational costs tractable, we chose the FlowNetC architecture with improved
training settings as a base model. Note that this section aims at comparing uncertainty

11.5.1

ENSEMBLE
SI1ZE

11.5.2

SPARSI-
FICATION
ProTs

11.5 FEzperiments

t
Iter. | EPE
FlowNet2-C 600k | 3.77
FlowNet2-C 1.2m | 3.58
FlowNetC ours || 600k | 3.40

Table 11.1: Improved FlowNetC settings. Optical flow quality on Sintel train
clean with the original FlowNet2-C (Section 8.1) and our implementation.

estimation techniques and not at improving the optical flow over the base model.
The use of ensembles may lead to minor improvements of the optical flow estimates
due to the averaging effect, but these improvements are not of major concern here.
In the end, we will also show results for a large stacked network to demonstrate that
the uncertainty estimation as such is not limited to small, simple networks.

Training Details

In contrast to FlowNet2-C, we use Batch Normalization [IS15] and a continuously
dropping cosine learning-rate schedule [LH17|. This yields shorter training times and
improves the results a little (see Table 11.1). We train on FlyingChairs and start with
a learning rate of 2e — 4. For all networks, we fix a training budget of 600k iterations
per network, with an exception for SGDR where we also evaluate performing some
pre-cycles. For SGDR ensembles, we perform restarts every 75k iterations. We fix the
T to 1 so that each annealing takes the same number of iterations. We experiment
with different variants of building ensembles by using snapshots at the end of each
annealing. We always take the latest M snapshots when building an ensemble. For
dropout experiments, we use a dropout ratio of 0.2 as suggested by Kendall and
Gal [KG17]. For bootstrapped ensembles, we train M FlowNetC in parallel with
bootstrapping, such that each network sees different 67% of the training data.

For the ensembles, we must choose the size M of the ensemble. The sampling errors
for the mean and the variance decrease with increasing M. However, since networks
for optical flow estimation are quite large, we are limited in the tractable sample size
and restrict it to M = 8. We also use M = 8 for FlowNetH.

For SGDR, there is an additional pre-cycle parameter: in the beginning, snapshots
have usually not yet converged, and the number of pre-cycles is the number of
snapshots we discard before building the ensemble. In the supplemental material
of [ICGT18], we show that the later the snapshots are taken, the better the results
are in terms of EPE and AUSE. We use eight pre-cycles in the following experiments.

Evaluation Metrics

In order to assess the quality of the uncertainty measures, we use so-called sparsifica-
tion plots, which were already introduced in Section 3.6 and are commonly used for
this purpose [AHPB13, WKR17, KMGO08, KN11]|. Such plots reveal to which extent
the estimated uncertainty coincides with the true errors. If the estimated variance

108

Chapter 11 Uncertainty Estimation

SPARSI-
FICATION
ERROR

ORACLE
EPE

11.5.3

(11.5.1)

109

1.0

3 — FlowNetH-Pred-Merged

%0.8 2 + FlowNetH Oracle

E

§0.6

a

204

o

(o))

©0.2

2

< .
%835 032 04 06 08 1.0

Fraction of Removed Pixels

Figure 11.5: Sparsification plot of FlowNetH-Pred-Merged. Evaluated on the
Sintel train clean dataset. The plot shows the average endpoint error (AEPE) for each
fraction of pixels having the highest uncertainties removed. The oracle sparsification
shows the lower bound by removing each fraction of pixels ranked by the ground-truth
endpoint error. Removing 20% of the pixels results in halving the average endpoint
error.

is a good representation of the model uncertainty and the pixels with the highest
variance are removed gradually, the error should decrease in a monotonous manner.
Such a plot of our method is shown in Figure 11.5. The best possible ranking of
uncertainties is done by the true error to the ground truth. We refer to this curve as
oracle sparsification. Figure 11.5 reveals that our uncertainty estimate is very close
to this oracle.

For each approach, the oracle is different, hence a comparison among approaches
by using a single sparsification plot is not possible. To this end, we introduce a
measure which we call sparsification error. It is defined as the difference between
the sparsification and its oracle. Since this measure normalizes the oracle out, a fair
comparison of different methods is possible. In Figure 11.6a, we show sparsification
errors for all methods we present in this paper. In order to quantify the sparsification

error with a single number, we use the Area Under the Sparsification Error curve
(AUSE).

For each ensemble, we also compute the hypothetical endpoint error by considering
the pixel-wise best selection from each member (decided by the ground truth). We
call this error Oracle EPE and report it in combination with the empirical variances
among the members in Table 11.2.

Comparison among Uncertainties from CNNs

Nomenclature: When a single network is trained against the endpoint error, we
refer to it and the resulting ensemble as empirical (abbreviated as Emp; Figures
11.4a and 11.4b), while when the single network is trained against the negative
log-likelihood, we refer to it and the ensemble as predictive (Pred; Figures 11.4c
and 11.4d). When multiple samples or solutions are merged with a network, we add
Merged to the name. E.g., FlowNetH-Pred-Merged refers to a FlowNetH that predicts
multiple hypotheses and merges them with a network, using the loss for a predictive
distribution for both hypotheses and merging respectively (Figure 11.4e).

11.5.3.1

11.5 FEzperiments

+ Dropout-Emp © Dropout-Emp, M = 2
Dropout-Pred z & DropoutEmp, M = 4
" BootstrappedEns.-Em| 40 & S Do
PP --Emp & Dropout-Emp,
0.4}| —* BootstrappedEns.-Pred Dropout-Pred,
P — -Pred- & Dropout-Pred, M = 4
BootstrappedEns.-Pred-Merged o Dropout-pred. M8
v SGDR-Emp & Dropout-Pred, M = 16
.. SGDR-Pred 3.8 0 BootstrappedEns.-Emp, M = 2
F= 2 [I S N S o BootstrappedEns.-Emp, M = 4
S || . FowNetc.Pred | o PP P,
03 FlowNetC-Pred | o e BootstrappedEns.-Emp, M = 8
W=l — FlowNetH-Pred-Merged e @ BootstrappedEns.-Pred, M = 2
S o @ BootstrappedEns.-Pred, M = 4
=) w " BootstrappedEns.-Pred, M = 8
S g 36 BootstrappedEns.-Pred-Merged, M = 8
s & SGDR-Emp, M =2
4 SGDR-Emp, M = 4
20.2 a mp, M =
S & SGDR-Emp,M=8
w L] & SGDR-Emp, M = 16
3.4 . 4 SGDR-Pred, M =2
- ° & SGDR-Pred, M =4
* A SGDR-Pred,M =8
0.1 i o A SGDR-Pred, M = 16
% FlowNetH-Pred-Merged, M = 8
Aropnnnoommmennoeeee o 4 ® FlowNetC-Pred, M = 1
3.2
0.
8.0 0.2 0.4 0.6 0.8 1.0 0.05 0.10 0.15 0.20
Fraction of Removed Pixels AUSE
(a) (b)

Figure 11.6: Graphic evaluation of uncertainty estimation approaches. (a)
Sparsification error on the Sintel train clean dataset. The sparsification error (smaller
is better) is the proposed measure for comparing the uncertainty estimates between
different methods. FlowNetH-Pred-Merged and BootstrappedEnsemble-Pred-Merged
perform best in almost all sections of the plot. (b) Scatter plot of EPE vs. AUSE
for the tested approaches visualizing some content of Table 11.2.

empirical (Emp) predictive (Pred)

AUSE | EPE | Oracle EPE | Var. AUSE | EPE | Oracle EPE | Var. Runtime
FlowNetC - 3.40 - - 0.133 | 3.62 - - 38ms
Dropout 0.212 | 3.67 2.56 5.05 0.158 | 3.99 2.96 3.80 320ms
SGDREnsemble 0.191 | 3.25 2.56 3.50 0.134 | 3.40 2.87 1.52 304ms
BootstrappedEnsemble 0.209 | 341 2.17 9.52 0.127 | 3.46 2.49 6.15 304ms
BootstrappedEnsemble-Merged 0.102 | 3.20 2.49 6.15 332ms
FlowNetH-Merged -]350] 173 [83.32] 0095 3.36 1.89 52.85 60ms

Table 11.2: Quantitative evaluation of uncertainty estimation approaches.
Comparison of flow and uncertainty predictions of all proposed methods with M = 8
on the Sintel train clean dataset. Oracle-EPE is the EPE of the pixel-wise best
selection from the samples or hypotheses determined by the ground truth. Var. is the
average empirical variance over the eight samples or hypotheses. Predictive versions
(Pred) generally outperform empirical versions (Emp). Including a merging network
increases the performance. FlowNetH-Pred-Merged performs best for predicting
uncertainties and has a comparatively low runtime.

The results for all methods are summarized in Table 11.2 as well as Figures 11.6a
and 11.6b and will be discussed in the following.

Empirical Uncertainty Estimation

The results show that uncertainty estimation with empirical ensembles is possible but
worse than the other methods presented here. However, in comparison to predictive
counterparts, empirical ensembles tend to yield slightly better EPEs, as will be
discussed in the following.

110

Chapter 11 Uncertainty Estimation

11.5.3.2

(11.5.2)

11.5.3.3

(11.5.3)

(11.5.4)

ENSEMBLE
TYPES

FLowNETH
AND
MERGING

111

Predictive Uncertainty Estimation

The estimated uncertainty is better with predictive models than with the empirical
ones. Even a single FlowNetC with predictive uncertainty yields much better uncer-
tainty estimates than any empirical ensemble in terms of AUSE. The experiments
confirm that it is advantageous to let a network estimate its own uncertainty and
that the predictive uncertainty due to x and f is much more important than the
approximated epistemic uncertainty due to w.

This is because when training against a predictive loss function, the network has the
possibility to explain outliers with the uncertainty (see Section 11.3.2). While the
EPE loss tries to enforce correct solutions for outliers, too, the log-likelihood loss
attenuates them. This also leads to slightly worse results for the EPE.

Predictive Ensembles

Comparing ensembles of predictive networks to a single predictive network shows that
the latter is already very close to the predictive ensembles and that the benefit of
an ensemble is limited. This concludes that an epistemic uncertainty approximation
over the weights w is not really relevant for FlowNet.

We also attribute this to loss attenuation: different ensemble members appear to
attenuate outliers in a similar manner and induce less diversity, as can be seen by the
variance between the members of the ensemble (column “Var.” in Table 11.2). When
comparing empirical to predictive ensembles, we can draw the following conclusions:

e Empirical estimation provides more diversity within the ensemble (variance
column in Table 11.2).

e Empirical estimation provides lower EPEs and Oracle EPEs.
e All empirical setups provide worse uncertainty estimates than predictive setups.

Analyzing the different types of ensembles, we see that the commonly used dropout
technique [GG16a] performs worst in terms of EPE and AUSE, although the differences
between the predictive ensemble types are not very large. SGDR ensembles provide
better uncertainties, yet the variance among the samples is the smallest one. This is
likely because later ensemble members are derived from previous snapshots of the
same model. Furthermore, because of the eight pre-cycles, SGDR experiments ran
for the largest number of training iterations, which could be an explanation why they
provide a slightly better EPE than other ensembles. Bootstrapped ensembles provide
the highest sample variance and the lowest AUSE among the predictive ensembles.

We finally analyze FlowNetH and uncertainty estimation with merging networks. In
order to obtain a fair comparison, we also investigated putting a merging network on
top of the predictive bootstrapped ensembles. Results show that the multi-hypotheses
network (FlowNetH-Pred-Merged) is on par with BootstrappedEnsemble-Pred-Merged
in terms of AUSE and EPE. However, including the runtime, FlowNetH-Pred-Merged
yields the best trade-off (see Table 11.2 on previous page). Only FlowNetC and
FlowNetH-Pred-Merged allow a deployment at interactive frame rates. Table 11.2 also

11.5.4

11.5.5

11.5 FEzperiments

Pred. Mean
[Pred Var]

Pred. Mean FlowNetS FlowNetS
m Pred. Mean Pred. Mean Pred. Mean
i R L MergeNet

Pred. Mean

Figure 11.7: Full flow and uncertainty estimation stack. The first two networks
are FlowNetH and the merging network as described in Section 11.4. The two stacked
FlowNetS architecture networks estimate residual refinements as in Chapter 9.

shows that FlowNetH has a much higher sample variance and the lowest oracle EPE.
This indicates that it internally has very diverse and potentially useful hypotheses
that could be exploited even better in the future. For some visual examples, we refer
to Tables 3 and 4 in the supplemental material of [ICGT18].

Qualitative Evaluation

We compare the favored approach from the previous section (FlowNetH-Pred-Merged)
to ProbFlow [WKR17|, which is an energy-minimization approach and currently the
state of the art for estimating the uncertainty of optical flow. Figure 11.8 (see next
page) shows a qualitative comparison. A general observation is that ProbFlow predicts
uncertainties mainly at image boundaries, which are the locations that most violate
the smoothness assumption in the energy term. In contrast, FlowNetH-Pred-Merged
predicts uncertain regions very well.

There is a lot of ambiguity in Figure 11.8a. Some background is visible between the
slats at the top, and the flow is still inferred correctly. At the bottom, the ambiguity
is too large and the flow is inferred incorrectly, which is also reflected by the predicted
uncertainty. In Figure 11.8b, our approach correctly predicts uncertainty due to
transparent windows, shadows and motion blur caused by rotating tires. Figure 11.8¢
shows a homogeneous board. Interestingly, the CNN approach is able to consider the
correct aperture and to predict the flow correctly, while it also correctly predicts a
high uncertainty due to the weakness of information. The remaining figures show
some more interesting examples. Notably, ProbFlow often misses objects in the
uncertainty prediction. In Figure 11.8h, it misses the ball entirely in both the flow
and the entropy, while our approach is able to capture it and to predict a high
uncertainty due to the motion blur.

For the full videos of the real-world dataset and further comments, please see the
supplementary video which can be found on https://youtu.be/HvyovWSo8uE. A
quantitative evaluation will be given in the next section.

Network Stacks and Benchmark Results

We now proceed to building the full network stack for FlowNetH-Pred-Merged,
as illustrated in Figure 11.7. We denote this stack as FlowNetH-Pred-Merged-

112

https://youtu.be/HvyovWSo8uE

Chapter 11 Uncertainty Estimation

113

Elow ours)
-~

Elow PH

Image 1

Ent. PF]

aP

Figure 11.8: Uncertainty estimation examples from real-world data. Ours is
FlowNetH-Pred-Merged, and “PF” stands for ProbFlow [WKR17]. ProbFlow mostly
only predicts uncertainties due to image and flow boundaries, while our approach
clearly predicts better uncertainties in general.

SS and train it on FlyingChairs and FlyingThings3D, similar to the stacks from
Chapter 9 — with the exception that for FlowNetH and the merging network, we use
Batch Normalization [IS15] as well as a continuously dropping cosine learning-rate
schedule [LH17] and 1.2M iterations for FlyingChairs. For the full details of the
training procedure, we refer to the supplemental material of [ICG™18].

11.5 FEzperiments

1.0
— ProbFlow — ProbFlow

60 81 ~ Oracle 0.25 — FlowNetH-Pred-Merged
_g . — FlowNetH-Pred-Merged . /\ ‘ — FlowNetH-Pred-Merged-SS
© « Oracle g 0.20
€ 3 o0
50.6} = — FlowNetH-Pred-Merged-SS < / T
= , \ « Oracle 20.15
w
S04 '*; /\ T
g 5 0.10
g —~ & I S
20.2 ; 0.05
Z .

0‘8.0 0.2 0.4 0.6 0.8 1.0 0'08.0 0.2 0.4 0.6 0.8 1.0

Fraction of Removed Pixels Fraction of Removed Pixels
(a) (b)

Figure 11.9: Comparing FlowNetH variants to ProbFlow. Plots of the sparsi-
fication curves with their respective oracles (a) and of the sparsification errors (b)
for ProbFlow, FlowNetH-Pred-Merged and FlowNetH-Pred-Merged-SS (version with
two refinement networks stacked on top) on the Sintel train final dataset. KITTI
versions are similar and are provided in the supplemental material of [ICG118].

Sintel Clean Sintel Final KITTI .

AUSE | EPE || AUSE | EPE || AUSE | EPE | ™™™
| ProbFlow [WKR17] [0162 [1.87] 0.173 [3.34]| 0.466 [8.95 [[38.1sT |
[FlowNetH-Pred-Merged-FT-KITTI[[- [- [- | - [0.086]312] 60ms |
FlowNetH-Pred-Merged 0.117 [2.58]| 0.128 [3.78 || 0.151 [7.84 [60ms
FlowNetH-Pred-Merged-S 0.091 | 2.29 || 0.098 | 3.51 || 0.102 | 6.86 [86ms
FlowNetH-Pred-Merged-SS 0.089 | 2.19 || 0.096 | 3.40 | 0.091 6.50 99ms

Table 11.3: Benchmark results for FlowNetH variants. We compare FlowNetH
variants to the state-of-the-art uncertainty estimation method ProbFlow [WKR17] on
the Sintel train clean, the Sintel train final and our KITTI 2012+2015 validation split
datasets. The ““FT-KITTI” version is fine-tuned on our KITTT 201242015 training
split. FlowNetH-Pred-Merged, -S and -SS are all trained with the FlowNet2 schedule.
Our method outperforms ProbFlow in AUSE by a large margin as well as in terms
of EPE for the KITTI dataset. 'runtime is taken from [WKR17]. Please see the
supplemental material of [[(GT18] for details on the computation of the ProbFlow
outputs.

We compare our networks to the state-of-the-art method ProbFlow [WKR17| on the
common Sintel and KITTI benchmarks. Figure 11.9 shows the sparsification plots for
the Sintel train final. ProbFlow has almost the same oracle as FlowNetH-Pred-Merged,
i.e., the flow field from ProbFlow can equally benefit from sparsification, but the
actual sparsification error is higher due to its estimated uncertainty. This shows that
FlowNetH-Pred-Merged has superior uncertainty estimates. In Table 11.3, we show
that this also holds for the KITTI dataset (for fine-tuning purposes, we combine
KITTI 2012 and 2015). FlowNetH also outperforms ProbFlow in terms of EPE in
this case. This shows that the superior uncertainty estimates are not due to a weaker
optical flow model, i.e., from obvious mistakes that are easy to predict.

Table 11.3 further shows that the uncertainty estimation is not limited to simple
encoder-decoder networks but can also be applied successfully to state-of-the-art

114

Chapter 11 Uncertainty Estimation

11.6

(11.6.1)

115

stacked networks. The uncertainty estimation is not negatively influenced by the
stacking, despite the improving flow fields. This again shows that the uncertainty
estimation works reliably, notwithstanding of if the predicted optical flow is good or
bad. Finally, note that the three bottom variants of Table 11.3 were trained only on
synthetic data and are also able to predict good uncertainties on the totally different
domain of the KITTI dataset.

Summary

This chapter has shown that:

e For FlowNet, SGDR and bootstrapped ensembles perform better than the
commonly used dropout technique,

e predictive networks estimate uncertainty due to the input data x, the network
architecture f and the training process,

e for FlowNet, it is not necessary to model the epistemic uncertainty over the
weights w,

e the multi-hypotheses FlowNetH network performs among the best methods and
yields much faster runtimes than sampling-based approaches and ensembles,

e our FlowNetH-Pred-Merged qualitatively clearly outperforms the state-of-the-
art energy based method ProbFlow, and

e FlowNetH variants trained on synthetic data are able to generalize well to real
data also in the uncertainty estimations.

116

12.1

FEATURE
REFINEMENT

FLowNET2
REFINEMENT

COARSE-TO-

117

FINE

Chapter 12

Discussion

Chapter 2 defined the optical flow problem, and Statements 2.1.2 to 2.1.8 lead to
the observation that optical flow estimation is a hard problem and ill-defined. In
the following, the introduced approach will be related to traditional methods and
interesting properties will be discussed.

Architecture Choice

Traditional methods [BBPW04, BM11| implement coarse-to-fine estimation to avoid
local minima. The drawback is that small objects with large displacements are lost in
the coarse resolution and cannot be recovered during the refinement (Statement 3.2.7).
FlowNet also employs a coarse-to-fine refinement in the decoder. However, this
refinement happens in feature instead of image space, which carries more structure
and is also able to transport multiple motion hypotheses per location. It therefore does
not suffer from the coarse-to-fine limitations. The estimation of the deep supervision
flow fields are only an auxiliary component and do not constrain the main feature
stream (see also Figure 6.5).

Note that although the FlowNet2 pipeline introduces several refinement steps on
warped images, this does not necessarily imply a coarse-to-fine scheme. In general, a
refinement network in FlowNet2 can estimate any solution from the supplied images
or regularize spatially close or distant solutions given by the earlier network. In fact,
we see that the first network in the stack commonly outputs some noise (that might
also contain different possible hypotheses) and the second network then selects the
correct solution. This is illustrated in Figure 12.1. The behaviour can be considered
to be similar to the propagation in PatchMatch [BSFGO09| (Section 3.4.3).

Although the limitations of coarse-to-fine approaches are well-known, the recently
published works PWC-Net [SYLK18| and LiteFlowNet [HTL18] have proposed to
implement strict coarse-to-fine approaches with FlowNet. While this improves overall
performance, it also has the obvious drawback of being unable to estimate large
motions of small objects. An experiment to illustrate the limitations of coarse-to-fine
approaches is given in Figure 12.2 (see next page).

(12.1.1)

12.1 Architecture Choice

FlowNet2-C FlowNet2-CSS

Figure 12.1: Results during the refinement pipeline. The figure uses the
Middlebury visualization for best visibility. The refinement happens mainly due to
propagating correct solutions.

The traditional coarse-to-fine energy minimization [BBPWO04] method in the first
result column succeeds only for a very large object size and small displacement.
LDOF [BM11] and DeepFlow [WRHS13| integrate descriptor matching and are able
to solve up to the smallest object size. All traditional methods (first three result
columns) have problems with the weak texture in the background. Results could likely
be improved by tuning the trade-off hyper-parameter o of Equation 3.2.3. PWC-Net
has problems with fine structures (which also represent small objects) with large
displacements and fails for the four bottom rows with smaller object sizes. Note that
PWC-Net was also trained on FlyingChairs and should in principle be able to deal
with the given data very well. Also note that missing fine structures and missing
small objects do not affect the benchmarks significantly because they contribute very
little to the overall error. FlowNet2 yields the best results for small objects and
retains fine structures throughout the results.

Despite the limitation, PWC-Net and LiteFlowNet offer remarkable benchmark results
with much smaller network sizes than FlowNet2 (~ 9M vs. ~ 160M parameters) and
faster runtimes. Arguably, this brings us back to the search for best heuristic to solve
the optical flow problem (see also Section 3.4). An important observation is that
this search is actually data-driven. If nothing is known about the data’s properties,
FlowNetS provides the most general approach. FlowNetC increases performance on
the given benchmark by making assumptions about possible displacements and object
sizes that suit the data well. These assumptions are built into the architecture design
with the correlation layer. PWC-Net and LiteFlowNet exploit the data further by
integrating the coarse-to-fine approach as well as by being able to estimate flows in
large areas quickly and accurately.

Concluding, there is not a single best architecture for all possible optical flow appli-
cations. If nothing is known about the domain, FlowNetS can be applied to any kind
of training data and provides the most versatile solution. If, for example, one knows
the minimum object sizes and the maximum possible displacement, PWC-Net and
LiteFlowNet [HTL18| can be adapted to provide the best and fastest solution. This
is illustrated in Figure 12.3 (see next page).

118

Chapter 12 Discussion

119

o
o
4

b4
L4

Figure 12.2: Evaluation of coarse-to-fine estimation abilities. Each row of
the figure shows an example with two images and flow estimations from multiple
methods. “Ir.” is the traditional coarse-to-fine energy minimization from Brox et
al. [BBPWO04]|, “LDOF” is Large Displacement Optical Flow [BM11], “DF” is DeepFlow
with DeepMatching [WRHS13|, “PWC” is PWC-Net [SYLK18| and “FN2” is FlowNet2.
In the second row, we increase the displacement from 30 to 150px and then keep it
constant while reducing the object size. Tr. already fails for the larger displacement
in the second row. PWC-Net fails from row 5 onwards.

12.2

12.2 Regularization

P

Unconstrained
(data-driven)

(matching) (coarse-to-fine)

Performance

v

< Generality

Figure 12.3: General and specialized architectures. Red bars indicate correla-
tion layers. Architectures with more engineering perform better on public benchmarks,

but sacrifice generality.

> -
X IY . ¢
Img 1 Img 2
o e s |
7 J v
Img 1 Img 2 “" PWC
2 - I &

Img 1 Img 2
aCal fjﬂ

Figure 12.4: Evaluation of regularization challenges. Each row shows an ex-
ample with two images and flow estimations from multiple methods. “TIr.” is the
traditional coarse-to-fine energy minimization from Brox et al. [BBPWO04], “LDOF’
is Large Displacement Optical Flow [BM11|, “DF” is DeepFlow with DeepMatch-
ing [WRHS13|, “PWC” is PWC-Net [SYLK18| and “FN2” is FlowNet2. Note that the
third case is ambiguous: the inside of the contour could be moving with the contour
or with the background. FlowNet2 succeeds to solve all the cases.

Regularization

Next, we perform a set of experiments in order to test regularization capabilities.
The first row of Figure 12.4 shows a common example of the aperture problem. If
one considers only a small window around the center, the edges where the objects
touch would appear to be moving downwards. Considering the whole image, one can
observe that the blue bar is moving to the left and the black bar is moving to the
right.

120

Chapter 12 Discussion

NonrLocaL All approaches succeed in finding the motion at the edges of the bars; however, all
REGULARI- traditional approaches fail to determine the motion in the center area. Note that

ZATION

(12.2.1)

121

12.3

PATcH-
MATCH

LDOF

the FlowNet2 training includes the ChairsSDHom dataset, which contains priors for
homogeneous backgrounds. The estimation of PWC-Net on the background could
likely be improved when also fine-tuning on this dataset. Finding the motion of the
bars requires nonlocal regularization. The CNN approaches succeed in this case.

In the second row, an open contour is moving. In contrast to the closed contours,
its inside clearly belongs to the background and should not move. However, in
traditional approaches, the solution must diffuse through the contour gap, which
is problematic. In the third row, the contour is closed, but the inside color is the
same as the background. Thus, the inside of the contour could be interpreted as
moving with the contour or with the background. FlowNet2 establishes a nonlocal
regularization across the contour line and assigns the same motion to the inside as to
the background.

In the third example, the inside of the contour is colored differently. Now the inside
clearly moves with the contour, as FlowNet2 also correctly determines. In summary:

From the examples, we observe that CNNs use priors and perform nonlocal regular-
ization, which is much more sophisticated than in traditional methods. In particular,
CNNs prove to make much better use of image statistics (as has been shown before in
other tasks [KSH12, EPF14, RDGF16]). The results match human perception very
closely.

Comparison of Algorithm Implementations

As already mentioned in Section 12.1, the solution propagation in the FlowNet2
pipeline appears similar to PatchMatch [BSFG09]. Whether such solution propagation
also happens inside a single encoder-decoder architecture is possible but unknown.

The correlation layer of FlowNetC can be seen as being similar to the initial nearest-
neighbor matching in LDOF [BM11|. However, the FlowNetS without the correlation
is also able to solve for large displacements. FlowNetS and FlowNetC each comprise
10 convolutions + ReLUs in the encoder and four upconvolutions + ReLUs in the
decoder (when neglecting the deep supervision). LDOF operates on a coarse-to-fine
refinement and can hence be seen as being similar to the decoder, although LDOF
only refines flow information and not features. The operations of the Gauss-Newton
method in LDOF with SOR and lagged diffusivity include additions, multiplications,
derivatives, powers of two and nonlinearities. Most of these operations would require
multiple convolution and ReLU layers to approximate them. On the examples in
this chapter, LDOF performs 88 iterations, where each iteration consists of multiple
operations. When comparing to the four layers of the FlowNet decoder, this leads
to the conclusion that an algorithm similar to LDOF cannot be implemented in
FlowNet.

DeepFLOwW

PCA-Frow

(12.3.1)

12.3 Comparison of Algorithm Implementations

DeepMatching [WRHS13| operates already on response maps (equivalent to cost vol-
umes and correlations). It could be compared to the regularization part of FlowNetC
after the correlation, although the correlation output is much more sparse than the
initial response map from DeepMatching. The regularization in DeepMatching is
implemented by using sparse convolutions, max-pooling and nonlinearities. Although
DeepMatching also implements a backtracking algorithm through the max-pooling
operation and FlowNet does not use max-pooling at all, DeepMatching can be seen
as an example that regularization can be implemented with CNN operations. No-
tably, the convolutions in this implementation only use input weights with the values
0 and 1.

The resulting matches from DeepFlow then require a dense interpolation which
can be carried out with a variational approach [WRHS13| or with much simpler
interpolation [RWHS15|. Since a CNN can make very good use of image statistics,
one can expect the dense interpolation to be an easy task for the CNN.

If sparse matches are available, another way to obtain a dense flow field is by finding
a representation of the matches through a learned basis [WB15]. As FlowNet is
convolutional, it is not able to store any global basis vectors. However, one could still
imagine some local basis representation. In the upconvolutions, the weights can be
seen as learned basis vectors b; and the input features as coefficients «; (compare
to Equation 3.4.2). However, note that the combination of basis vectors leads to a
patch for every feature location. These patches overlap, and in order to obtain the
result for an output location, the values from the neighboring patches are summed
up. Thus, the upconvolution does not exactly correspond to a basis combination.

In general, we observe that there are some similarities between the presented CNNs
in this work and traditional approaches. However, the FlowNets contain very few and
simple operations and are able to learn a much more efficient heuristic, producing
much better results quantitatively and qualitatively.

This concludes that the traditional methods and past research has not determined the
most important principles of optical flow estimation and that much better heuristics
do exist.

122

123

(13.1)

Chapter 13

Outlook

This chapter presents ideas for future research directions by the author. EWTA and
the sampling/fitting framework are from recent joint work [MIGB19]. While the
author contributed to the idea of EWTA, the original concepts of EWTA and the
sampling/fitting framework were developed by Osama Makansi.

As listed in Section 1.3, FlowNet and FlowNet2 have already been extended by many
other works and have been used in numerous applications. Besides speed and accuracy,
reliability and robustness are most important for the use in real-world scenarios. The
uncertainty estimates presented in Chapter 11 constitute a milestone towards this
goal.

Networks that only provide point estimates have no means of indicating difficult
cases. The results of FlowNetH show that networks can be constructed to inform
about their own uncertainty and even about failure cases very well. However, in
uncertain situations and more complex applications, one might actually be interested
in multiple plausible alternative solutions. While FlowNetH already provides such
hypotheses, combining them with uncertainty prediction would mean to predict a full
mixture distribution:

M
p(y|x) = mip(ylp, i) -
=1

This is illustrated in Figure 13.1. While FlowNetC presented only a single point
estimate p, FlowNetH is able to produce multiple point estimates p; or distribution
estimates (p;,0;). What is missing are the relative importances m; to predict the
parameters (u;, 0, ;) of a full mixture distribution. The well-known approach to
estimate such a mixture density from a single forward pass is Mixture Density
Networks |Bis94| which are trained by minimizing the negative log-likelihood of
Equation 13.1. However, optimizing for general, unconstrained mixture distributions
requires special initialization as well as training procedures and badly suffers from

mode collapse [RLD*17, CRC*T18, CR18, MFS18, Gral3, HN99].

13 Outlook

+
FlowNetC +
Ttimat
Image 1
+ +
+t
FlowNetH
+ e
® ®
+
FlowNetP ?

Figure 13.1: From point estimates to mixture distributions. While FlowNetC
provided only point estimates for correspondences, FlowNetH extended the approach
to predicting multiple point or distribution hypotheses. In future, this could be
extended to an approach called FlowNetP providing multimodal distributions.

@» »Q{%"-’; »Q{%y%%

Sampling CNN Fitting Sof- ‘ Mixture

Images
mages (FlowNetH) CNN Assignment

Distribution

‘ Hypotheses

Figure 13.2: Sampling and fitting framework. The first network produces a set
of point fi or distribution samples (fix, 0%) referred to as hypotheses. The second
network estimates soft assignments v, ; from which mixture components (7, p;, o;)
can be computed. Note that in general, there are many more hypotheses (fig, %),
e.g. k= 1..20, than mixture components (7;, i, 0;), e.g. i = 1..4.

Recent joint work with Osama Makansi and Ozgiin Cicek [MICB19] has shown that
the limitations of mixture density networks can be overcome by combining the WTA
approach (as also used in FlowNetH) to produce diverse samples with a separate
distribution fitting stage. This is illustrated in Figure 13.2. The first network predicts
point fix or distribution samples (fig, 6%), which resemble the hypotheses. The second
network then fits a mixture distribution to these hypotheses, as is normally done by
the EM algorithm [Bis06]. For details of the approach, the reader is referred to the
publication [MICB19].

Since the work with Osama Makansi and Ozgiin Cicek proves that with the sampling
and fitting framework from Figure 13.2, high-quality multimodal distributions can be
obtained in the task of future prediction, this multimodal prediction could also be

implemented for FlowNet, basically extending it to the FlowNetP shown in Figure 13.1.

This network would predict a mixture distribution over possible correspondences of
each pixel in the first image.

124

Chapter 18 Outlook

125

p(mu'--yw7) =
p(z,)p(z.)p(z,)p (|2 2,7,)p (2| 2, 2,)P (| T,)P (| T, 25)

Figure 13.3: Using CNNs to build graphical models. In robotics, graphical
models are commonly used to engineer robust systems. Providing CNNs that output
probability distributions allows for using them as a building block in such probabilistic
Systems.

This step would advance networks from point estimates to multimodal distributional
outputs. In robotics, it has long been common practice to model systems in a
probabilistic way [TBF06|. Providing distributions from CNNs would allow for using
CNNs as building blocks in such systems. This is illustrated in Figure 13.3. One very
well-known method is the Bayes filter, as illustrated in Figure 13.4. Here, the robot
state is modelled probablistically. While the robot position is completely unknown
in the beginning the robot is able to localize itself from multiple observations. The
important issue to notice is that the robot position cannot be inferred from any single
observation alone but only by carrying and refining a distribution over all possible
positions across time.

For FlowNet, the concept of belief does not apply since optical flow does not keep
track of the states of objects. While for a tracker, implementing the belief over states
might be of importance and improve performance, for optical flow, an implementation
is difficult due to the dense prediction and the integral over past states of the Bayes
filter update step. However, the general concept is still interesting, and one can make
use of the insight that multiple observations help narrow down uncertain predictions.
Multiple observations could be obtained by:

1. Predicting a distribution over possible motions from a single image. This yields
motion priors that really only stem from “typical behaviour”.

2. Predicting a distribution over possible motions from the past trajectory. This
yields priors for typical object trajectories.

3. Predicting a distribution over possible motions from multiple sensor inputs.
While one sensor might produce ambiguous results in certain situations, more
certainty could be obtained from other sensors.

4. Fusing predictions from different models. E.g., next to the two-frame image
input, one may maintain a 3D reconstruction of the scene and use it in combi-
nation with the future frame to determine a distribution over possible motions.
This would couple optical flow estimation with higher level representations.

13 Outlook

b)

bel(x)

p(zlx)

d) A A A x

bel(x)
- - x

Figure 13.4: Illustration of Bayes filter. The figure illustrates a robot using the
Bayes filter [TBF06] for localization. The robot state is modeled with a probability
distribution called “belief” (bel(x)). In the beginning (a), the belief is uniform,
resembling complete uncertainty about the position of the robot. Observation p(z|z)
of a door then shapes the belief to the three possible door locations (b). After taking
an action, the robot is even more uncertain about its state (c), and observing another
door finally leads to a highly certain localization (d). Source: [TBF06].

Section 2.1.4 explained that priors are very important for optical flow estimation,
and a major observation in this thesis is that the capability of CNNs to learn such
priors well boosts optical flow performance. The first two above items would serve to
develop even more sophisticated priors (“learning about how different objects typically
move, given a snapshot or a history”), while the second two items would allow for
using different sources of information, such as from different sensors or as an inference
from a more complex internal state.

This is motivated by the fact that humans also maintain an internal state. As the
optical flow estimation is ill-posed (Statement 2.1.6), humans use information, such
as the previous motion and semantics about the current scene. Up to today, optical
flow algorithms have brought performance to a very high level without using any
such knowledge. However, the performance of such algorithms must be limited by the
uninformedness and is also likely to reach a limit on the benchmarks at some point.
Integrating the above points could approach the complex problem by constructing
more informed algorithms, which are more similar to sources of information humans
use to reason about scenes, and could be the step for the next generation of algorithms.

126

127

Chapter 14

Conclusion

In the past, many algorithms have been proposed for optical flow estimation. An
important observation is that the optical flow problem cannot be solved optimally. As
described in Section 2.1.4, because of the aperture problem, optical flow estimation
is ill-posed and prior knowledge is required to obtain a solution. Furthermore,
determining the solution involves complex joint optimization of the flow in combination
with occlusions and motion boundaries.

Past methods have provided heuristics, thereby each yielding different performance
with respect to the hyper-parameters object size and appearance, displacement size,
amount of occlusions and amount of required invariance. A very important insight
is that accounting for all possible values of these hyper-parameters is not feasible
and that one commonly chooses the best parameters by hand depending on the data,
which makes the search for the best algorithm data-driven.

This is where the work of this thesis stroke. An alternative approach that learns the
heuristic from training data end-to-end was presented by using convolutional neural
networks. The results show that such learned heuristic is significantly better and
more efficient than the traditional engineered methods. In particular, the work has
shown...

e For the first time, that end-to-end estimation of optical flow with CNNs is
possible.

e That such CNNs learn the concept of correspondence and generalize very well
from simplistic synthetic data.

e That the CNNs learn priors that correspond to human perception very closely
and outperform engineered approaches in this respect by far.

e That such approaches run in real time.

e That it is possible to obtain state-of-the-art results. The approach was extended
to a refinement pipeline with a stack of networks, thus achieving state of the

14 Conclusion

art in KITTI 2012 and 2015 optical flow as well as in KITTI 2015 disparity
benchmarks.

e That the approach can be extended to full scene flow.

e That the results of network stacks deliver smooth flow fields as well as crisp
motion boundaries and are able to estimate fine details while not suffering from
coarse-to-fine limitations.

e That in comparison to traditional methods, CNNs are far superior in occlusion
and motion boundary estimation. For both, state of the art was achieved and
led to a new state of the art in motion segmentation.

e That infinite amounts of unlabeled real data can be successfully integrated into
the training procedure.

e That the networks are even able to inform about their own predictions’ uncer-
tainty very well and outperform engineered methods in this respect by far, too.
State of the art was achieved in uncertainty estimation for optical flow.

Particularly the abilities of the approach to be fine-tuned to the target domain, to run
in real time and to provide uncertainty estimates have made it the method of choice
for applications. As a whole, these contributions have revolutionized optical flow
estimation and changed the direction of research in the field. A promising direction
of further research is extending the approach to full mixture distributions and using
it to create larger and more complex Al systems.

128

Acknowledgements

First, I would like to express my sincere thanks to my advisor Professor Thomas Brox
for the continuous support of my PhD study and related research, for his motivation,
good advice and especially his patience.

Besides my advisor, the extent of this work would never have been possible on my
own, so I would like to thank all coauthors of the publications. In particular, I would
like to thank Alexey Dosovitskiy for being a mentor, Philipp Fischer for initiating the
first Hackathon, Nikolaus Mayer for the great work on training data, Margret Keuper
for the discussions as well as the work on occlusions and motion segmentation, Ozgiin
(igek for the joint work on uncertainty and finally Osama Makansi and Silvio Galesso
for being enthusiastic and prospering students. I have sincerely enjoyed working
together with all of you and will miss you.

As in every research career, I also had frustrating times and times of doubt. In this
respect, I'd like to thank Nikolaus Hensler who encouraged me to live with temporal
uncertainty and nevertheless to continue. Only this made it possible to bring this
PhD project to such great success. In this respect, I would also like to thank Ricardo
Bartra and my mother for believing in me and giving me emotional support.

At last, I'd like to thank the DFG and Trimbot 2020 for the funding and making this
research possible in the first place.

130

Bibliography

131

Bibliography

[ADPS07]

|[AHPB13]

[AME*14)

[AMFM11]

[AP16]

[BA9G|

[BBMOY]

[BBPWOA4]

Luis Alvarez, Rachid Deriche, Théo Papadopoulo, and Javier Sanchez.
Symmetrical dense optical flow estimation with occlusions detection.
Int. Journal of Computer Vision (IJCV), 75(3):371-385, Dec 2007.

Osin Mac Aodha, Ahmad Humayun, Marc Pollefeys, and Gabriel J.
Brostow. Learning a confidence measure for optical flow. Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 35(5):1107—
1120, May 2013.

Mathieu Aubry, Daniel Maturana, Alexei Efros, Bryan Russell, and
Josef Sivic. Seeing 3D chairs: Exemplar part-based 2D-3D alignment
using a large dataset of CAD models. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik.
Contour detection and hierarchical image segmentation. Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 33(5), May
2011.

Aria Ahmadi and Ioannis Patras. Unsupervised convolutional neural
networks for motion estimation. In Int. Conference on Image Processing
(ICIP), 2016.

Michael J. Black and Padmanabhan Anandan. The robust estimation
of multiple motions: Parametric and piecewise-smooth flow fields.
Computer Vision and Image Understanding (CVIU), 63(1):75-104,
1996.

Thomas Brox, Christoph Bregler, and Jitendra Malik. Large displace-
ment optical flow. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert.
High accuracy optical flow estimation based on a theory for warping.
In European Conference on Computer Vision (ECCV), 2004.

[BCKW15]

[BETVGOS]

[BF00a]

[BFOOD|

[BFB94]

[BGO5]

[Bis94]

[Bis06]

[BM10]

[BM11]

[BR7S)]

[Bro05]

[Bro1§]

Bibliography

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra. Weight uncertainty in neural networks. In Int. Conference
on Machine Learning (ICML), 2015.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-up robust features (SURF). Computer Vision and Image
Understanding (CVIU), 110(3):346-359, Jun 2008.

Michael J. Black and David J. Fleet. Probabilistic detection and
tracking of motion boundaries. Int. Journal of Computer Vision
(I1JCV), 38(3):231-245, Jul 2000.

Michael J. Black and David J. Fleet. Probabilistic detection and
tracking of motion boundaries. Int. Journal of Computer Vision
(I1JCV), 38(3):231-245, Jul 2000.

John L. Barron, David J. Fleet, and Steven S. Beauchemin. Perfor-
mance of optical flow techniques. Int. Journal of Computer Vision
(I1JCV), 12(1):43-77, Feb 1994.

Michael Bleyer and Margrit Gelautz. A layered stereo matching
algorithm using image segmentation and global visibility constraints.
Journal of Photogrammetry and Remote Sensing (ISPRS), 59:128-150,
05 2005.

Christopher M. Bishop. Mixture density networks. Technical report,
Aston University, Birmingham, UK, 1994.

Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag, 2nd edition, 2006.

Thomas Brox and Jitendra Malik. Object segmentation by long term
analysis of point trajectories. In Furopean Conference on Computer

Vision (ECCYV), 2010.

Thomas Brox and Jitendra Malik. Large displacement optical flow:
descriptor matching in variational motion estimation. Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 33(3):500-513,
2011.

Andrew Burton and John Radford. Thinking in Perspective: Critical
Essays in the Study of Thought Processes. Methuen, 1978.

Thomas Brox. From pizels to regions: Partial differential equations in
image analysis. PhD thesis, Faculty of Mathematics and Computer
Science, Saarland University, April 2005.

Thomas Brox. Computer Vison class 8, Optical Flow II.

https://1lmb.informatik.uni-freiburg.de/lectures/computer_
vision_I/slides/ComputerVision08.pdf, 2018.

132

https://lmb.informatik.uni-freiburg.de/lectures/computer_vision_I/slides/ComputerVision08.pdf
https://lmb.informatik.uni-freiburg.de/lectures/computer_vision_I/slides/ComputerVision08.pdf

Bibliography

133

[BSFGOY]

[BSL*09]

[BTS15|

[BVS17]

[BWOG|

[BWL18]

[BWSB12

[CAA17|

[CAA19]

[CCL*18]

[CFG14]

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B. Gold-
man. PatchMatch: A randomized correspondence algorithm for struc-
tural image editing. ACM Transactions on Graphics (TOG), 28(3),
Aug 20009.

Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J.
Black, and Richard Szeliski. A database and evaluation methodology
for optical flow. Technical Report MSR-TR-2009-179, December 2009.

Christian Bailer, Bertram Taetz, and Didier Stricker. Flow Fields:
Dense correspondence fields for highly accurate large displacement

optical flow estimation. Int. Conference on Computer Vision (ICCYV),
2015.

Christian Bailer, Kiran Varanasi, and Didier Stricker. CNN-based
patch matching for optical flow with thresholded hinge embedding loss.

In Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

Andrés. Bruhn and Joachim Weickert. A confidence measure for
variational optic flow methods. In Geometric Properties for Incomplete
Data, pages 283-298, 2006.

Linchao Bao, Baoyuan Wu, and Wei Liu. CNN in MRF: Video
object segmentation via inference in a CNN-based higher-order spatio-
temporal MRF. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Daniel J. Butler, Jonas Wulff, Garett B. Stanley, and Michael J.
Black. A naturalistic open source movie for optical flow evaluation. In
European Conference on Computer Vision (ECCV), 2012.

Aaron Chadha, Alhabib Abbas, and Yiannis Andreopoulos.
Compressed-domain video classification with deep neural networks:
There’s way too much information to decode the matrix. In Int.
Conference on Image Processing (ICIP), 2017.

Aaron Chadha, Alhabib Abbas, and Yiannis Andreopoulos. Video
classification with CNNs: Using the codec as a spatio-temporal activity
sensor. Transactions on Clircuits and Systems for Video Technology
(TCSVT), 29(2):475-485, Oct 2019.

Yu-Ting Chen, Wen-Yen Chang, Hai-Lun Lu, Tingfan Wu, and Min
Sun. Leveraging motion priors in videos for improving human seg-
mentation. In Furopean Conference on Computer Vision (ECCV),
2018.

Tiangi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient
Hamiltonian Monte Carlo. In Int. Conference on Machine Learning

(ICML), 2014.

[CHM™*15]

[CK14]

[CK17]

[COR*16]

[CP17]

[CR18]

[CRC*18]

[Cyb89]

[DB15]

[DFI*15]

[DFST16]

Bibliography

Anna Choromanska, Mikael Henaff, Michaél Mathieu, Gérard Ben
Arous, and Yann LeCun. The loss surfaces of multilayer networks.
Journal of Machine Learning Research (JMLR), 38:192-204, 2015.

Qifeng Chen and Vladlen Koltun. Fast MRF optimization with appli-
cation to depth reconstruction. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with
cascaded refinement networks. In Int. Conference on Computer Vision
(ICCV), 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The Cityscapes dataset for semantic urban scene under-
standing. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffu-
sion: A flexible framework for fast and effective image restoration.
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
39(6):1256-1272, Jun 2017.

Joseph Curro and John Raquet. Deriving confidence from artificial
neural networks for navigation. In Position, Location and Navigation
Symposium (PLANS), 2018.

Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han
Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric.
Multimodal trajectory predictions for autonomous driving using deep
convolutional networks. arXiv pre-print, 1809.10732, 2018.

George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals and Systems (MCSS), 2(4):303—
314, 1989.

Benjamin Drayer and Thomas Brox. Combinatorial regularization of
descriptor matching for optical flow estimation. In British Machine
Vision Conference (BMVC), 2015.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner
Hazirbag, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers,
and Thomas Brox. FlowNet: Learning optical flow with convolutional
networks. In Int. Conference on Computer Vision (ICCV), 2015.

Alexey Dosovitskiy, Philipp Fischer, Jost T. Springenberg, Martin
Riedmiller, and Thomas Brox. Discriminative unsupervised feature
learning with exemplar convolutional neural networks. Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 38(9):1734-1747,
Oct 2016.

134

Bibliography

135

[DGI16]

[DLHT16]

[DSB15]

[DTO5]

[DYLTO7]

[DZ13]

[EMWO04]

[ENT18]

[EPF14]

[FAFM15]

[FAR1S)

[FBK15]

Uriin Dogan, Tobias Glasmachers, and Christian Igel. A unified view on
multi-class support vector classification. Journal of Machine Learning
Research (JMLR), 17(1):1550-1831, Jan 2016.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image
super-resolution using deep convolutional networks. Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 38(02):295-307,
Feb 2016.

Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox.
Learning to generate chairs with convolutional neural networks. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2005.

Yi Deng, Qiong Yang, Xueyin Lin, and Xiaoou Tang. Stereo correspon-
dence with occlusion handling in a symmetric patch-based graph-cuts
model. Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 29(6):1068-1079, Jun 2007.

Piotr Dollar and C. Lawrence Zitnick. Structured forests for fast edge
detection. In Int. Conference on Computer Vision (ICCV), 2013.

Geoffrey Egnal, Max Mintz, and Richard P. Wildes. A stereo confidence
metric using single view imagery with comparison to five alternative
approaches. Image and Vision Computing, 22(12):943-957, 2004.

Alaaeldin El-Nouby and Graham W. Taylor. Real-time end-to-end
action detection with two-stream networks. In Conference on Computer

and Robot Vision (CRV), 2018.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map pre-
diction from a single image using a multi-scale deep network. In Int.
Conference on Neural Information Processing Systems (NIPS), 2014.

Katerina Fragkiadaki, Pablo Arbelaez, Panna Felsen, and Jitendra
Malik. Learning to segment moving objects in videos. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

Kevin J. Shih Robert Kirby Jon Barker David Tarjan Andrew Tao
Bryan Catanzaro Fitsum A. Reda, Guilin Liu. SDC-Net: Video pre-
diction using spatially-displaced convolution. In Furopean Conference
on Computer Vision (ECCYV), 2018.

Denis Fortun, Patrick Bouthemy, and Charles Kervrann. Optical flow
modeling and computation: A survey. Computer Vision and Image
Understanding (CVIU), 134:1-21, May 2015.

[FDB14]

[FVT+93

|GAB17]

|GBC16]

[GG15]

|GG16a]

[GG16b)

[GGZY18]

[GK17]

[GLU12|

[GLY95]

[Grall]

Bibliography

Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Descriptor
matching with convolutional neural networks: A comparison to SIFT.
arXiv pre-print, 1405.5769, 2014.

Olivier Faugeras, Thierry Viéville, Eric Theron, Jean Vuillemin,
Bernard Hotz, Zhengyou Zhang, Laurent Moll, Patrice Bertin, Herve
Mathieu, Pascal Fua, Gérard Berry, and Catherine Proy. Real-time
correlation-based stereo: algorithm, implementations and applications.
Research Report RR-2013, INRIA, 1993.

Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsu-
pervised monocular depth estimation with left-right consistency. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural
networks with Bernoulli approximate variational inference. In Int.
Conference on Learning Representations (ICLR) Workshop, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approx-
imation: Representing model uncertainty in deep learning. In Int.
Conference on Machine Learning (ICML), 2016.

Fatma Giiney and Andreas Geiger. Deep discrete flow. In Asian
Conference on Computer Vision (ACCV), 2016.

Chang Gao, Derun Gu, Fangjun Zhang, and Yizhou Yu. ReCoNet:
Real-time coherent video style transfer network. In Asian Conference
on Computer Vision (ACCV), 2018.

Spyros Gidaris and Nikos Komodakis. Detect, replace, refine: Deep
structured prediction for pixel wise labeling. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready
for autonomous driving? The KITTI vision benchmark suite. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

Davi Geiger, Bruce Ladendorf, and Alan Yuille. Occlusions and
binocular stereo. Int. Journal of Computer Vision (IJCV), 14(3):211-
226, Apr 1995.

Alex Graves. Practical variational inference for neural networks. In
Int. Conference on Neural Information Processing Systems (NIPS),
2011.

136

http://www.deeplearningbook.org

Bibliography

137

|Gral3|

[GRBK12)

[HA15a|

[HA15b]

[HAB11]

[HBK*14]

[HC16]

[HDO7]

[HDW13]

[HEO0S]

[HHC18§]

|Hir05]

[HLP17]

Alex Graves. Generating sequences with recurrent neural networks.
arXiv pre-print, 1308.0850, 2013.

Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli. Multiple
choice learning: Learning to produce multiple structured outputs. In

Int. Conference on Neural Information Processing Systems (NIPS),
2012.

J. Hernandez-Lobato and R. Adams. Probabilistic backpropagation
for scalable learning of Bayesian neural networks. In Int. Conference
on Machine Learning (ICML), 2015.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network.
In Int. Conference on Learning Representations (ICLR) Workshop,
2015.

Ahmad Humayun, Oisin Mac Aodha, and Gabrial J. Brostow. Learning
to find occlusion regions. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2011.

Michael Hornacek, Frederic Besse, Jan Kautz, Andrew W. Fitzgibbon,
and Carsten Rother. Highly overparameterized optical flow using

PatchMatch belief propagation. In Furopean Conference on Computer
Vision (ECCYV), 2014.

Sojeong Ha and Seungjin Choi. Convolutional neural networks for
human activity recognition using multiple accelerometer and gyroscope
sensors. In Int. Joint Conference on Neural Networks (IJCNN), 2016.

Frédéric Huguet and Frédéric Devernay. A variational method for
scene flow estimation from stereo sequences. In Int. Conference on

Computer Vision (ICCV), 2007.

David Hafner, Oliver Demetz, and Joachim Weickert. Why is the
Census Transform good for robust optic flow computation? In Scale
Space and Variational Methods in Computer Vision (SSVM), 2013.

James Hays and Alexei A. Efros. im2gps: estimating geographic
information from a single image. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2008.

Po-Yu Huang, Wan-Ting Hsu, Chun-Yueh Chiu, Ting-Fan Wu, and
Min Sun. Efficient uncertainty estimation for semantic segmentation
in videos. In Furopean Conference on Computer Vision (ECCV), 2018.

Heiko Hirschmuller. Accurate and efficient stereo processing by semi-
global matching and mutual information. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2005.

Gao Huang, Yixuan Li, and Geoff Pleiss. Snapshot ensembles: Train
1, get M for free. In Int. Conference on Learning Representations

(ICLR), 2017.

Bibliography

[HLvdMW17| Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.

[HM12]

[HMLLI1S|

[HN99)

[Hor91]

[HR17]

HS81]

[HTL18]

[HWK™*18]

[HZRS16]

[IQGT18]

[IMS*17]

[1S15]

Weinberger. Densely connected convolutional networks. Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

Xiaoyan Hu and Philippos Mordohai. A quantitative evaluation of
confidence measures for stereo vision. Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 34(11):2121-2133, Nov 2012.

Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy. Learn-
ing to steer by mimicking features from heterogeneous auxiliary net-
works. arXiv pre-print, 1811.02759, 2018.

Lars U. Hjorth and Ian T. Nabney. Regularization of mixture density
networks. In IEE Conference Publication, 1999.

Kurt Hornik. Approximation capabilities of multilayer feedforward
networks. Neural Networks, 4(2):251-257, Mar 1991.

Junhwa Hur and Stefan Roth. MirrorFlow: Exploiting symmetries
in joint optical flow and occlusion estimation. In Int. Conference on
Computer Vision (ICCV), 2017.

Berthold K. P. Horn and Brian G. Schunck. Determining optical flow.
Artificial Intelligence, 17:185-203, 1981.

Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. LiteFlowNet: A
lightweight convolutional neural network for optical flow estimation.
In Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Ping Hu, Gang Wang, Xiangfei Kong, Jason Kuen, and Yap-Peng Tan.
Motion-guided cascaded refinement network for video object segmen-
tation. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

Eddy Ilg, Ozgiin Cicek, Silvio Galesso, Aaron Klein, Osama Makansi,
Frank Hutter, and Thomas Brox. Uncertainty estimates and multi-
hypotheses networks for optical flow. In FEuropean Conference on
Computer Vision (ECCV), 2018.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey
Dosovitskiy, and Thomas Brox. FlowNet 2.0: Evolution of optical flow
estimation with deep networks. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Int.
Conference on Machine Learning (ICML), 2015.

138

Bibliography

139

[ISB18]

[JGW17]

[KAB15|

[KB15|

[KBI*19]

[KDD18]

[Keul7]

[KG17]

[KK12]

[KKJGO7]

[KMD™17]

Eddy Ilg, Tonmoy Saikia, and Thomas Brox. Occlusions, motion and
depth boundaries with a generic network for optical flow, disparity, or
scene flow estimation. In European Conference on Computer Vision

(ECCV), 2018,

Joel Janai, Fatma Giiney, Jonas Wulff, Michael Black, and Andreas
Geiger. Slow Flow: Exploiting high-speed cameras for accurate and

diverse optical flow reference data. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Margret Keuper, Brun Andrés, and Thomas Brox. Motion trajectory
segmentation via minimum cost multicuts. In Int. Conference on

Computer Vision (ICCV), 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Int. Conference on Learning Representations (ICLR),
2015.

Anna Khoreva, Rodrigo Benenson, Eddy Ilg, Thomas Brox, and Bernt
Schiele. Lucid data dreaming for multiple object tracking. Int. Journal
of Computer Vision (IJCV), Mar 2019.

Dimitrios Konstantinidis, Kosmas Dimitropoulos, and Petros Daras.
A deep learning approach for analyzing video and skeletal features in
sign language recognition. In Int. Conference on Imaging Systems and
Techniques (IST), pages 1-6, 2018.

Margret Keuper. Higher-order minimum cost lifted multicuts for
motion segmentation. In Int. Conference on Computer Vision (ICCV),
2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in
Bayesian deep learning for computer vision? In Int. Conference on
Neural Information Processing Systems (NIPS), 2017.

Philipp Krahenbiihl and Vladlen Koltun. Efficient nonlocal regular-
ization for optical flow. In Furopean Conference on Computer Vision
(ECCYV), 2012.

Claudia Kondermann, Daniel Kondermann, Bernd Jdhne, and
Christoph Garbe. An adaptive confidence measure for optical flows
based on linear subspace projections. In German Conference on Pat-
tern Recognition (GCPR), 2007.

Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry,
Ryan Kennedy, Abraham Bachrach, and Adam Bry. End-to-end
learning of geometry and context for deep stereo regression. In Int.
Conference on Computer Vision (ICCV), 2017.

[KMF18|

[KMGOS]

[KMT14]

[KN11]|

[KSH12]

[KSKO06]

[KZ01a]

[KZO01D]

[LACOS]

[LBIS]

[LC18|

[LFGT18]

Bibliography

Moritz Kampelmiihler, Michael G Miiller, and Christoph Feichtenhofer.
Camera-based vehicle velocity estimation from monocular video. arXiv
pre-print, 1802.07094, 2018.

Claudia Kondermann, Rudolf Mester, and Christoph Garbe. A statis-
tical confidence measure for optical flows. In Furopean Conference on
Computer Vision (ECCV), 2008.

Vladimir Kolmogorov, Pascal Monasse, and Pauline Tan. Kolmogorov
and Zabih’s graph cuts stereo matching algorithm. Image Processing
On Line, 4:220-251, Oct 2014.

Jan Kybic and Claudia Nieuwenhuis. Bootstrap optical flow confidence
and uncertainty measure. Computer Vision and Image Understanding
(CVIU), 115(10):1449-1462, 2011.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
classification with deep convolutional neural networks. In Int. Confer-
ence on Neural Information Processing Systems (NIPS), 2012.

Andreas Klaus, Mario Sormann, and Konrad Karner. Segment-based
stereo matching using belief propagation and a self-adapting dissim-
ilarity measure. In Int. Conference on Pattern Recognition (ICPR),
2006.

Vladimir Kolmogorov and Ramin Zabih. Computing visual corre-
spondence with occlusions using graph cuts. In Int. Conference on

Computer Vision (ICCV), 2001.

Vladimir Kolmogorov and Ramin Zabih. Computing visual corre-
spondence with occlusions using graph cuts. In Int. Conference on
Computer Vision (ICCV), 2001.

Sebastien Lefebvre, Sebastien Ambellouis, and Francois Cabestaing.
A colour correlation-based stereo matching using 1D windows. In
Conference on Signal-Image Technologies and Internet-Based Systems
(SITIS), 2008.

Yann LeCun and Yoshua Bengio. Convolutional networks for images,
speech, and time series. The Handbook of Brain Theory and Neural
Networks, pages 255-258, 1998.

Xin Li and Mooi Choo Chuah. ReHAR: Robust and efficient human ac-
tivity recognition. In Winter Conference on Applications of Computer

Vision (WACV), 2018.

Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Linbo Qiao, Wei
Chen, Li Zhou, and Jianfeng Zhang. Learning for disparity estimation
through feature constancy. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

140

Bibliography

141

[LH17]

[LHY17a]

[LHY17D]

[LK81]

[LL18al

[LL18b]

[LLR18]

[LNSC14|

[Low04]

[LPB16|

[LPC*16]

[LSD15]

[LSS12a]

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent
with warm restarts. In Int. Conference on Learning Representations
(ICLR), 2017.

Wei-Sheng Lai, Jia-Bin Huang, and Ming-Hsuan Yang. Semi-supervised
learning for optical flow with generative adversarial networks. In Int.
Conference on Neural Information Processing Systems (NIPS). 2017.

Wei-Sheng Lai, Jia-Bin Huang, and Ming-Hsuan Yang. Semi-supervised
learning for optical flow with generative adversarial networks. In Int.
Conference on Neural Information Processing Systems (NIPS), 2017.

Bruce D. Lucas and Takeo Kanade. An iterative image registration
technique with an application to stereo vision. In Int. Joint Conference
on Artificial Intelligence (IJCAI), 1981.

Xijaoxiao Li and Chen Change Loy. Video object segmentation with
joint re-identification and attention-aware mask propagation. In Euro-
pean Conference on Computer Vision (ECCV), 2018.

Xijaoxiao Li and Chen Change Loy. Video object segmentation with
joint re-identification and attention-aware mask propagation. In FEuro-
pean Conference on Computer Vision (ECCV), 2018.

Yin Li, Miao Liu, and James M. Rehg. In the eye of beholder: Joint
learning of gaze and actions in first person video. In Furopean Confer-
ence on Computer Vision (ECCV), 2018.

Song-Lin Liu, Zhao-Dong Niu, Gang Sun, and Zeng-Ping Chen. Gabor
filter-based edge detection: A note. Optics, 125(15):4120-4123, 2014.

David G. Lowe. Distinctive image features from scale-invariant key-
points. Int. Journal of Computer Vision (IJCV), 60(2):91-110, Nov
2004.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
Simple and scalable predictive uncertainty estimation using deep en-
sembles. In Int. Conference on Neural Information Processing Systems
(NIPS) Workshop, 2016.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan,
David Crandall, and Dhruv Batra. Stochastic multiple choice learning
for training diverse deep ensembles. In Int. Conference on Neural
Information Processing Systems (NIPS), 2016.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

Marius Leordeanu, Rahul Sukthankar, and Cristian Sminchisescu.
Efficient closed-form solution to generalized boundary detection. In
European Conference on Computer Vision (ECCV), 2012.

[LSS12b]

[LSV*18]

[LTC17]

[LYT11]

[LZS13]

[LZXW18]|

[Mac92|

[Mat92]

[MAW+07]

[MD11]

[MDSL17]

[MFS18]

Bibliography

Marius Leordeanu, Rahul Sukthankar, and Cristian Sminchisescu.
Efficient closed-form solution to generalized boundary detection. In
European Conference on Computer Vision (ECCV), 2012.

Siyang Li, Bryan Seybold, Alexey Vorobyov, Xuejing Lei, and C. C. Jay
Kuo. Unsupervised video object segmentation with motion-based
bilateral networks. In FEuropean Conference on Computer Vision
(ECCYV), 2018.

Marc T. Law, Nicolas Thome, and Matthieu Cord. Learning a distance
metric from relative comparisons between quadruplets of images. Int.
Journal of Computer Vision (IJCV), 121(1):65-94, Jan 2017.

Ce Liu, Jenny Yuen, and Antonio Torralba. SIFT Flow: Dense
correspondence across scenes and its applications. Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 33(5):978-994,
May 2011.

Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally
affine sparse-to-dense matching for motion and occlusion estimation.
In Int. Conference on Computer Vision (ICCV), 2013.

Qiuyu Li, Shu Zhan, Liangfeng Xu, and Congzhong Wu. Facial
micro-expression recognition based on the fusion of deep learning and
enhanced optical flow. Multimedia Tools and Applications, pages 1-16,
2018.

David J. C. MacKay. A practical Bayesian framework for backpropa-
gation networks. Neural Computation, 4(3):448-472, May 1992.

Larry Matthies. Stereo vision for planetary rovers: Stochastic modeling
to near real-time implementation. Int. Journal of Computer Vision

(1JCV), 8(1):71-91, Jul 1992.

Paul Merrell, Amir Akbarzadeh, Liang Wang, Philippos Mordohai,
Jan-Michael Frahm, Ruigang Yang, David Nistér, and Marc Pollefeys.
Real-time visibility-based fusion of depth maps. In Int. Conference on

Computer Vision (ICCV), 2007.

Robert C. Moore and John DeNero. L1 and L2 regularization for
multiclass hinge loss models. In Symposium on Machine Learning in
Speech and Natural Language Processing, 2011.

Muhammad Habib Mahmood, Yago Diez, Joaquim Salvi, and Xavier
Llado. A collection of challenging motion segmentation benchmark
datasets. Pattern Recognition, 61:1-14, 2017.

Safa Messaoud, David Forsyth, and Alexander G. Schwing. Structural
consistency and controllability for diverse colorization. In Furopean
Conference on Computer Vision (ECCV), 2018.

142

Bibliography

143

[MG15]

[MHN13|

[MHR18]

[MIB17]

[MIB18]

[MICB19]

[MIF+18]

[MIH*16]

[MP9S]|

[MS05]

[MT99]

[Nea96|

Moritz Menze and Andreas Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier non-
linearities improve neural network acoustic models. In Int. Conference
on Machine Learning (ICML) Workshop, 2013.

Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Unsupervised
learning of optical flow with a bidirectional census loss. In Association
for the Advancement of Artificial Intelligence (AAAI), 2018.

Osama Makansi, Eddy Ilg, and Thomas Brox. End-to-end learning
of video super-resolution with motion compensation. In German
Conference on Pattern Recognition (GCPR), 2017.

Osama Makansi, Eddy Ilg, and Thomas Brox. FusionNet and Augment-
edFlowNet: Selective proxy ground truth for training on unlabeled
image. arXiv pre-print, 1808.06389, 2018.

Osama Makansi, Eddy Ilg, Ozgiin Cicek, and Thomas Brox. Over-
coming limitations of mixture density networks: A sampling and
fitting framework for multimodal future prediction. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazirbas, Daniel
Cremers, Alexey Dosovitskiy, and Thomas Brox. What makes good
synthetic training data for learning disparity and optical flow estima-
tion? Int. Journal of Computer Vision (IJCV), 126(9):942-960, Sep
2018.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel
Cremers, Alexey Dosovitskiy, and Thomas Brox. A large dataset
to train convolutional networks for disparity, optical flow, and scene
flow estimation. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

Etienne Mémin and Patrick Pérez. A multigrid approach for hier-
archical motion estimation. In Int. Conference on Computer Vision

(ICCV), 1998.

Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation
of local descriptors. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 27(10):1615-1630, Oct 2005.

Roberto Manduchi and Carlo Tomasi. Distinctiveness maps for im-
age matching. In Int. Conference on Image Analysis and Processing

(ICIAP), 1999.

Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis,
University of Toronto, 1996.

[NF16]

[NH10]

INS18]

[NSM1§]

[NW94]

[NYD16]

[OMB14]

OV

[PPSHS18]

[PRCBP16]

[Prol7]

[PSA10]

Bibliography

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual
representations by solving jigsaw puzzles. In European Conference on
Computer Vision (ECCV), 2016.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve re-
stricted Boltzmann machines. In Int. Conference on Machine Learning
(ICML), 2010.

David Nilsson and Cristian Sminchisescu. Semantic video segmentation
by gated recurrent flow propagation. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

Michal Neoral, Jan Sochman, and Jifi Matas. Continual occlusions
and optical flow estimation. In Asian Conference on Computer Vision

(ACCV), 2018.

David A. Nix and Andreas S. Weigend. Estimating the mean and
variance of the target probability distribution. In World Congress on
Computational Intelligence, 1994.

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass
networks for human pose estimation. In Furopean Conference on
Computer Vision (ECCV), 2016.

Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation of
moving objects by long term video analysis. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 36(6):1187-1200, Jun
2014.

Michael Otte and Hans-Hellmut Nagel. Optical flow estimation: Ad-
vances and comparisons. In Furopean Conference on Computer Vision
(ECCYV), 2006.

Eduardo Pérez-Pellitero, Mehdi SM Sajjadi, Michael Hirsch, and
Bernhard Schélkopf. Photorealistic video super resolution. In European
Conference on Computer Vision (ECCV) Workshop, 2018.

Juan-Manuel Perez-Rua, Tomas Crivelli, Patrick Bouthemy, and
Patrick Perez. Determining occlusions from space and time image
reconstructions. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

Blender Project. Open movies (Agent, Caminandes, Cosmos, Sintel
and Big Buck Bunny). https://www.blender.org/about/projects,
2017.

Mathias Perrollaz, Anne Spalanzani, and Didier Aubert. Probabilistic
representation of the uncertainty of stereo-vision and application to
obstacle detection. In Intelligent Vehicles Symposium (1V), 2010.

144

https://www.blender.org/about/projects

Bibliography

145

[PSR*17]

[PTM17]

[RB17]

[RDB13]

[RDGF16]

[RFB15]

[RKLS07|

[RLD*17

[RWHS15]

[RYN*17]

[SAMR18]|

Jiahao Pang, Wenxiu Sun, Jimmy S. J. Ren, Chengxi Yang, and Qiong
Yan. Cascade residual learning: A two-stage convolutional neural
network for stereo matching. In Int. Conference on Computer Vision

(ICCV) Workshop, 2017.

Matteo Poggi, Fabio Tosi, and Stefano Mattoccia. Quantitative eval-
uation of confidence measures in a machine learning world. In Int.
Conference on Computer Vision (ICCV), 2017.

Anurag Ranjan and Michael J. Black. Optical flow estimation using
a spatial pyramid network. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style
transfer for videos and spherical images. Int. Journal of Computer
Vision (1JCV), 126(11):1199-1219, Nov 2018.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention (MICCAI), 2015.

Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and Martin
Szummer. Optimizing binary MRFs via extended roof duality. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2007.

Christian Rupprecht, Iro Laina, Robert DiPietro, Maximilian Baust,
Federico Tombari, Nassir Navab, and Gregory D. Hager. Learning in an
uncertain world: Representing ambiguity through multiple hypotheses.
In Int. Conference on Computer Vision (ICCV), 2017.

Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia
Schmid. EpicFlow: Edge-preserving interpolation of correspondences
for optical flow. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

Zhe Ren, Junchi Yan, Bingbing Ni, Bin Liu, Xiaokang Yang, and
Hongyuan Zha. Unsupervised deep learning for optical flow estimation.
In Association for the Advancement of Artificial Intelligence (AAAI),
2017.

Hajar Sadeghi Sokeh, Vasileios Argyriou, Dorothy Monekosso, and
Paolo Remagnino. Superframes, a temporal video segmentation. In
Int. Conference on Pattern Recognition (ICPR), 2018.

[SBM*11]

[SCH15]

[SEG18]

[SHLCO09]

[SJ04]

[SKH*19)

[SKP15]

[SLD17]

[SLP14]

[SN19]

[SP16]

SS08]

Bibliography

Patrick Sundberg, Thomas Brox, Michael Maire, Pablo Arbelaez, and
Jitendra Malik. Occlusion boundary detection and figure/ground
assignment from optical flow. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2011.

Manolis Savva, Angel X. Chang, and Pat Hanrahan. Semantically-
enriched 3D models for common-sense knowledge. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

Mennatullah Siam, Sara Eikerdawy, Mostafa Gamal, Moemen Abdel-
Razek, Martin Jagersand, and Hong Zhang. Real-time segmentation

with appearance, motion and geometry. In Int. Conference on Intelli-
gent Robots and Systems (IROS), 2018.

Sumit Srivastava, Seong Jong Ha, Sang Hwa Lee, and Nam Ik Cho.
Stereo matching using hierarchical belief propagation along ambiguity
gradient. In Int. Conference on Image Processing (ICIP), 2009.

Matthew Schultz and Thorsten Joachims. Learning a distance metric
from relative comparisons. In Int. Conference on Neural Information
Processing Systems (NIPS), 2004.

A. F. M. Saifuddin Saif, Akib Shahriar Khan, Abir Mohammad Hadi,
Rahul Prashad Karmoker, and Joy Julian Gomes. Aggressive action
estimation: A comprehensive review on neural network based human

segmentation and action recognition. Int. Journal of Education and
Management Engineering (IJEME), 9:9-19, Jan 2019.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A
unified embedding for face recognition and clustering. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 39(4):640-651, Apr 2017.

Deqing Sun, Ce Liu, and Hanspeter Pfister. Local layering for joint
motion estimation and occlusion detection. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

Pat Hanrahan Shree Nayar, Ravi Ramamoorthi. Basic Principles of
Surface Reflectance. hhttps://www.cs.cmu.edu/afs/cs/academic/
class/15462-£09/www/lec/lec8.pdf, 2019. Accessed 25-Jan-2019.

Akihito Seki and Marc Pollefeys. Patch based confidence prediction for
dense disparity map. In British Machine Vision Conference (BMVC),
2016.

Daniel Scharstein and Richard Szeliski. Stereo matching with nonlinear
diffusion. Int. Journal of Computer Vision (IJCV), 28(2):155-174,
Jun 1998.

146

hhttps://www.cs.cmu.edu/afs/cs/academic/class/15462-f09/www/lec/lec8.pdf
hhttps://www.cs.cmu.edu/afs/cs/academic/class/15462-f09/www/lec/lec8.pdf

Bibliography

147

[SSB12]

[STB*+18

[SW17]

[SWS+13)

[SYLK18|

[SZ14a|

SZ14b]

[SZB17]

[Szel0]

57513

[TBF06]

[TBL18]

Deqing Sun, Erik Sudderth, and Michael J. Black. Layered segmenta-
tion and optical flow estimation over time. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

Nicola Strisciuglio, Radim Tylecek, Michael Blaich, Nicolai Petkov,
Peter Biber, Jochen Hemming, Eldert van Henten, Torsten Sattler,
Marc Pollefeys, Theo Gevers, Thomas Brox, and Robert B. Fisher.
TrimBot2020: An outdoor robot for automatic gardening. In 50th Int.
Symposium on Robotics (ISR), 2018.

Amit Shaked and Lior Wolf. Improved stereo matching with constant
highway networks and reflective confidence learning. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Deqing Sun, Jonas Wulff, Erik Sudderth, Hanspeter Pfister, and
Michael Black. A fully-connected layered model of foreground and

background flow. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net:
CNNs for optical flow using pyramid, warping, and cost volume. In

Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos. In Int. Conference on Neural
Information Processing Systems (NIPS), 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In Int. Conference on
Learning Representations (ICLR), 2014.

Nima Sedaghat, Mohammadreza Zolfaghari, and Thomas Brox. Hybrid
learning of optical flow and next frame prediction to boost optical flow
in the wild. arXiv pre-print, 1612.03777, 2017.

Richard Szeliski. Computer Vision: Algorithms and Applications.
Springer-Verlag, 1st edition, 2010.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101:
A dataset of 101 human actions classes from videos in the wild. arXiv
pre-print, 1212.0402, 2013.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. Cambridge University Press, 1st edition, 2006.

Adam M Terwilliger, Garrick Brazil, and Xiaoming Liu. Recurrent flow-
guided semantic forecasting. In Winter Conference on Applications of
Computer Vision (WACYV), 2018.

[TCM17]

[TDDT18]

[Tkal8|

[TLF10]

[TLZ*19]

[TPBM18]

[TXD*19]

[UZU*17]

[VBR*05]

[VSF+18]

[VSR15]

Bibliography

Pauline Tan, Antonin Chambolle, and Pascal Monasse. Occlusion
detection in dense stereo estimation with convex optimization. In Int.
Conference on Image Processing (ICIP), 2017.

Minh-Triet Tran, Tung Dinh-Duy, Thanh-Dat Truong, Vinh Ton-
That, Thanh-Nhon Do, Quoc-An Luong, Thanh-An Nguyen, Vinh-
Tiep Nguyen, and Minh N. Do. Traffic flow analysis with multiple
adaptive vehicle detectors and velocity estimation with landmark-based

scanlines. In Conference on Computer Vision and Pattern Recognition
(CVPR) Workshop, 2018.

Dmytro Tkachenko. Human action recognition using fusion of modern
deep convolutional and recurrent neural networks. In Int. Conference
on System Analysis € Intelligent Computing (SAIC), 2018.

Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An efficient dense
descriptor applied to wide baseline stereo. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 32(5):815-830, 2010.

Zhigang Tu, Hongyan Li, Dejun Zhang, Justin Dauwels, Baoxin Li,
and Junsong Yuan. Action-stage emphasized spatio-temporal VLAD
for video action recognition. Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 28:2799-2812, 2019.

Fabio Tosi, Matteo Poggi, Antonio Benincasa, and Stefano Mattoccia.
Beyond local reasoning for stereo confidence estimation with deep
learning. In European Conference on Computer Vision (ECCV), 2018.

Zhigang Tu, Wei Xie, Justin Dauwels, Baoxin Li, and Junsong Yuan.
Semantic cues enhanced multi-modality multi-stream CNN for ac-
tion recognition. Transactions on Chircuits and Systems for Video
Technology (TCSVT), 29(5):1423-1437, May 2019.

Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer,
Eddy Ilg, Alexey Dosovitskiy, and Thomas Brox. DeMoN: Depth
and motion network for learning monocular stereo. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and
Takeo Kanade. Three-dimensional scene flow. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 27(3):475-480, 2005.

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama,
and Kevin Murphy. Tracking emerges by colorizing videos. In Furopean
Conference on Computer Vision (ECCYV), 2018.

Christoph Vogel, Konrad Schindler, and Stefan Roth. 3D scene flow
estimation with a piecewise rigid scene model. Int. Journal of Computer

Vision (IJCV), 115(1):1-28, 2015.

148

Bibliography

149

[VVB17]

[WB15]

[WFR*16]

[WKR17]

[WL15]

[WLZ*18]

[WRHS13]

[WRHS15]

[WSs5]

[WS09a|

[WS09b]

[WSL*14]

Johan Vertens, Abhinav Valada, and Wolfram Burgard. SMSnet: Se-
mantic motion segmentation using deep convolutional neural networks.
In Int. Conference on Intelligent Robots and Systems (IROS), 2017.

Jonas Wulff and Michael J. Black. Efficient sparse-to-dense optical
flow estimation using a learned basis and layers. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

Shenlong Wang, Sean Ryan Fanello, Christoph Rhemann, Shahram
Izadi, and Pushmeet Kohli. The global patch collider. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

Anne S. Wannenwetsch, Margret Keuper, and Stefan Roth. ProbFlow:
Joint optical flow and uncertainty estimation. In Int. Conference on

Computer Vision (ICCV), 2017.

Paul Wohlhart and Vincent Lepetit. Learning descriptors for object
recognition and 3D pose estimation. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew
Tao, Jan Kautz, and Bryan Catanzaro. Video-to-video synthesis. In
Int. Conference on Neural Information Processing Systems (NIPS),
2018.

Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia
Schmid. DeepFlow: Large displacement optical flow with deep match-
ing. In Int. Conference on Computer Vision (ICCV), 2013.

Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia
Schmid. Learning to detect motion boundaries. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

David H. Warren and Edward R. Strelow. FElectronic Spatial Sensing
for the Blind: Contributions from Perception, Rehabilitation, and
Computer Vision. Springer Netherlands, 1985.

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning
for large margin nearest-neighbor classification. Journal of Machine
Learning Research (JMLR), 10:207-244, Jun 2009.

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning
for large margin nearest neighbor classification. Journal of Machine
Learning Research (JMLR), 10:207-244, Jun 20009.

Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin
Wang, James Philbin, Bo Chen, and Ying Wu. Learning fine-grained
image similarity with deep ranking. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

[WSLB17]

[WT11]

[WTP+09

[XBZ18]

[XFL*+18]

[XFYL18]

[XIM12]

[XRK17]

[XWW18]

[XXFH19]

[YHD16]

[YL15]

Bibliography

Jonas Wulff, Laura Sevilla-Lara, and Michael J. Black. Optical flow in
mostly rigid scenes. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic
gradient Langevin dynamics. In Int. Conference on Machine Learning
(ICML), 2011.

Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel,
Daniel Cremers, and Horst Bischof. Anisotropic Huber-L1 optical flow.
In British Machine Vision Conference (BMVC), 2009.

Shuangjie Xu, Linchao Bao, and Pan Zhou. Class-agnostic video
object segmentation without semantic re-identification. In European
Conference on Computer Vision (ECCV), 2018.

Huaxin Xiao, Jiashi Feng, Guosheng Lin, Yu Liu, and Maojun Zhang.
MoNet: Deep motion exploitation for video object segmentation. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Yu-Syuan Xu, Tsu-Jui Fu, Hsuan-Kung Yang, and Chun-Yi Lee. Dy-
namic video segmentation network. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Li Xu, Jiaya Jia, and Yasuyuki Matsushita. Motion detail preserving
optical flow estimation. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 34(9):1744-1757, 2012.

Jia Xu, René Ranftl, and Vladlen Koltun. Accurate optical flow via
direct cost volume processing. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human
pose estimation and tracking. In European Conference on Computer

Vision (ECCYV), 2018.

Christopher Xie, Yu Xiang, Dieter Fox, and Zaid Harchaoui. Object
discovery in videos as foreground motion clustering. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Jason J. Yu, Adam W. Harley, and Konstantinos G. Derpanis. Back to
basics: Unsupervised learning of optical flow via brightness constancy
and motion smoothness. In Furopean Conference on Computer Vision

(ECCV), 2016.

Jiaolong Yang and Hongdong Li. Dense, accurate optical flow estima-
tion with piecewise parametric model. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

150

Bibliography

151

[YMU14]

[YMYS18]

[ZCZT18]

[ZDYW18]

[ZF14]

[ZIE17]

[ZL14]

[ZLL18]

[ZLNH17]

[ZLX18|

2501

|ZSPT18]

[ZW94]

Koichiro Yamaguchi, David McAllester, and Raquel Urtasun. Efficient
joint segmentation, occlusion labeling, stereo and flow estimation. In
European Conference on Computer Vision (ECCV), 2014.

Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and Yoichi Sato.
Future person localization in first-person videos. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Zheng Zhang, Dazhi Cheng, Xizhou Zhu, Stephen Lin, and Jifeng Dai.
Integrated object detection and tracking with tracklet-conditioned
detection. arXiv pre-print, 1811.11167, 2018.

Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high
performance video object detection. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In Furopean Conference on Computer Vision

(ECCV), 2014.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Split-brain autoen-
coders: Unsupervised learning by cross-channel prediction. Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

Jure Zbontar and Yann LeCun. Computing the stereo matching cost
with a convolutional neural network. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

Qi Zhao, Fangmin Li, and Xinhua Liu. Real-time visual odometry based
on optical flow and depth learning. In Int. Conference on Measuring
Technology and Mechatronics Automation (ICMTMA), 2018.

Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexander G. Haupt-
mann. Guided optical flow learning. In Conference on Computer
Vision and Pattern Recognition (CVPR) Workshop, 2017.

Haochen Zhang, Dong Liu, and Zhiwei Xiong. Convolutional neu-
ral network-based video super-resolution for action recognition. In
Automatic Face & Gesture Recognition (FG), 2018.

Zhengyou Zhang and Ying Shan. A progressive scheme for stereo
matching. In 8D Structure from Images — SMILE 2000, 2001.

Cheng Zhao, Li Sun, Pulak Purkait, Tom Duckett, and Rustam Stolkin.
Learning monocular visual odometry with dense 3D mapping from

dense 3D flow. In Int. Conference on Intelligent Robots and Systems
(IROS), 2018.

Ramin Zabih and John Woodfill. Non-parametric local transforms
for computing visual correspondence. In Furopean Conference on
Computer Vision (ECCV), 1994.

152

Notes

Notes

153

Notes

154

Notes

155

Notes

156

Notes

157

[o]Vision

COMPUTER VISION University of Freiburg

ion

ﬁ FlowNetC

N
FlowNetS

Correlati

Dekanin:

Erstgutachter und Betreuer:
Zweitgutachterin:

May 2019
Hypothesis 0
[Hypothesis 1 |
. - MergeNet
;

Prof. Dr. Hannah Bast

Prof. Dr. Thomas Brox
Prof. Dr. Cordelia Schmid

	e6c03e87fc1fbca8a51a4510ab3f04dc7dc8fcb98a5d11bc19513dcde01e7fe8.pdf
	e103d18046774f184f2b561c2c6aed5f0b94db6166de3e25037a7e9267385af7.pdf
	e6c03e87fc1fbca8a51a4510ab3f04dc7dc8fcb98a5d11bc19513dcde01e7fe8.pdf

